|
Биогеохимия почвы |
В.А. Ковда
Смотрите также:
Биографии биологов, почвоведов
|
ГРУППЫ ГЕОХИМИЧЕСКОЙ ПОДВИЖНОСТИ ПРОДУКТОВ ВЫВЕТРИВАНИЯ И ПОЧВООБРАЗОВАНИЯ
Как показано выше, подвижность различных соединений довольно изменчива. Продукты выветривания и почвообразования можно объединить в группы и ряды геохимической подвижности.
Б.Б. Полынов установил пять групп относительной подвижности элементов при выветривании и миграции:
I. Энергично выносимые: CI, Br, I, S 10 II. Легко выносимые: Са, Na, К, Mg 1 III. Подвижные: Si02, Р, Мп ОД IV. Слабоподвижные: Fe, Al, Ti 0,01 V. Инертные: SiO2 (кварца) 0
Руководствуясь этими рядами подвижности элементов при выветривании, можно предвидеть, что соединения элементов 1 и II групп будут легко выноситься из элювиальной коры выветривания и накапливаться в аккумулятивной коре выветривания. Соединения элементов III и IV групп, наоборот, будут относительно накапливаться в элювиальных горизонтах и корах выветривания.
А.И. Перельман (1955) предложил понятие коэффициента водной миграции, под которым следует понимать отношение среднего содержания данного элемента в речной воде к среднему его содержанию в литосфере (кларку) или к среднему содержанию этого элемента в горных породах, дренируемых рекой и притоками. В общих чертах группы элементов по коэффициентам водной миграции, подсчитанным А.И. Перельманом, близки к рядам Б.Б. Полынова, хотя в некоторых деталях они отличаются.
Главные отличия приходятся на условия восстановительного режима с образованием H2S, когда миграционная активность серы, железа, марганца, кобальта, меди и других элементов сильно меняется ().
Однако в природе не всегда выдерживаются эти закономерности. Нередко создаются условия, когда фактическая потеря элементов из коры выветривания и почв резко отличается от ожидаемой теоретически. Сопоставление большого числа материалов позволило нам дать эмпирическую группировку соединений по их геохимической подвижности, связанную в основном с условиями геохимии почв (табл. 35).
Соединения очень высокой подвижности. К этой группе относятся нитраты, хлориды щелочей и щелочных земель, сульфаты натрия, калия, магния, цинка, урана, карбонаты натрия и калия.
Относительную геохимическую подвижность этих соединений можно принять за 100. Наиболее растворимые из них — нитраты и хлориды, а также бромиды и йодиды — выщелачиваются в условиях элювиальных и горно-эрозионных ландшафтов, при большом увлажнении особенно интенсивно. Они же весьма энергично накапливаются в почвах и коре выветривания аккумулятивных аридных ландшафтов и тем в большем количестве, чем суше климат.
Сульфаты и карбонаты щелочей, обладая при низких температурах несколько меньшей растворимостью, нередко отстают в выщелачивании, задерживаются в транзитных ландшафтах по пути их миграции,-хотя также являются постоянными компонентами в процессах аккумуляции солей и почвах внутриматериковых низменностей, речных пойм и дельт,приморских береговых низменностей.
Соединения высокой подвижности. К этой группе относятся углекислые и двууглекислые соли магния, кальция, стронция, цинка, сернокислые кальций и стронций, фульваты большинства металлов. Их относительная подвижность в элювиально-аккумулятивных процессах почвообразования на 0,5—1 порядок ниже соединений первой группы и может быть обозначена индексом 50—10. Соли кальция и магния, отличаясь достаточно высокой растворимостью, выщелачиваются в областях господства элювиальных процессов. В аккумулятивных и транзитных ландшафтах сернокислые и углекислые соли кальция образуют резко выраженные скопления в виде конкреций или сплошных горизонтов.
В качестве катионов кальций, магний, калий и натрий интенсивно поглощаются и задерживаются коллоидно-дисперсными системами почв и осадочных пород. Калий поглощаясь растительными и животными организмами и входя в состав вторичных минералов, особенно гидрослюд, отстает в своей миграции от натрия. Магний, участвуя в процессах доломитизации и необменно поглощаясь вторичными силикатами и алюмосиликатами (монтмориллонит), также относительно отстает в выносе в сравнении с натрием. Кальций же входит в состав многих биогенных образований (скелеты, раковины) и представлен в почвах малорастворимыми соединениями (карбонаты, фосфаты). Поэтому и во второй группе продуктов наибольшей миграционной подвижностью отличаются соединения натрия, которые являются также и высокорастворимыми. Этому способствует и низкая биогенность натрия, значение которого в зольном составе растений невелико.
Соединения первой и второй групп в виде разнообразных смесей солей разной растворимости и в разной концентрации присутствуют в почвенных растворах, в грунтовых и речных водах. Они же участвуют в формировании минерализованных подземных вод и различных рассолов. В условиях аридного климата эти соли интенсивно накапливаются в грунтах и почвах степей, саванн, пустынь, образуя соленосные осадочные породы и засоленные почвы.
Соединения умеренной подвижности. К этой группе продуктов почвообразования и выветривания, обладающих относительно небольшой, но все же вполне выраженной миграционной способностью, принадлежат ионные и коллоидные растворы кремнезема, бикарбонаты и фосфаты железа, марганца, кобальта, комплексные соединения алюминия, железа, марганца, кобальта, никеля, меди с органическими кислотами.
Относительная подвижность соединений этой группы на 2—2,5 порядка ниже по сравнению с соединениями первой группы и может быть обозначена в среднем индексом 0,5—1,0, Соединения фосфора в большинстве малорастворимы и, кроме того, интенсивно захватываются растительными и животными организмами, на длительное время задерживаясь в биологическом круговороте. Значительные количества подвижного кремнезема поглощаются низшими и высшими организмами, участвуя в образовании панцирей, скелета или механических тканей (диатомовые, радиолярии, фитолитарии злаков и древесины).
Освобождающиеся в процессе выветривания соединения кремнезема, фосфора, марганца, железа ограничены в пространственной миграции, задерживаются частично в области элювия либо выпадают вследствие хе- могенных и биогенных реакций в осадок в области делювия, пролювия и аллювия транзитных ландшафтов. Однако значительные количества соединений кремнезема, фосфора, марганца, железа, кобальта, никеля уходят с водами грунтового и поверхностного стока в аккумулятивные области, образуя скопления в пойменных осадках и почвах, в дельтовых и прибрежных зонах морей и океанов, в озерах и болотах. Известны скопления вторичного кварца в солончаках Африки.
Соединения низкой подвижности. Значительно меньшей подвижностью в коре выветривания и почвах отличаются соединения алюминия, титана, окно- ных железа и марганца. Их подвижность в тысячи и десятки тысяч раз меньше, чем у соединений первой и второй групп. Это относится к гидроокисям названных металлов, а также к карбонатам и сульфатам бария и отчасти стронция, цинка. Однако иногда соединения алюминия перемещаются в заметных размерах, Образуя аккумулятивные месторождения бокситов. Все же общепризнано положение, что соединения алюминия и титана преимущественно накапливаются в остаточной коре выветривания, т. е. в области элювия. Именно поэтому древние элювиальные коры выветривания во влажных тропиках представлены минералами гидроокиси алюминия с примесью титана.'
Несколько иначе обстоит дело с соединениями железа. Образуя в коре выветривания в основном окисные формы, соединения железа также характеризуются низкой миграционной способностью и ясно выраженной тенденцией к накапливанию в остаточных продуктах элювиальных кор выветривания. Однако чуткая реакция железа на восстановительные условия и повышенную кислотность среды, образование при этом растворимых бикарбонатов и комплексных органо-минеральных соединений приводят к тому, что железо, подобно марганцу, иногда приобретает относительно высокую подвижность и может интенсивно выноситься из области элювия. Соответственно в гидроморфных условиях соединения железа и марганца образуют часто значительные скопления в почвах, болотах, озерах, лагунных и шельфовых зонах морей. По этим же причинам соединения железа образуют резко выраженные горизонты накопления в почвах (латеритные коры, орштейн, железистые кирасы).
Соединения ничтожной подвижности {инертные). В эту группу Б.Б. По- лыновым отнесен кремнезем кварца. Сюда должны быть отнесены такие высокоустойчивые минералы, как циркон, глинные минералы, а также сульфиды металлов. А.И. Перельман указывает на ничтожную миграционную способность соединений тория, ниобия, тантала. Относительная подвижность этой группы соединений приближается к нулю. Вследствие своей инертности кварц и циркон являются типичными компонентами остаточной коры выветривания, относительно накапливаясь в толщах элювия. По этим причинам кварц или циркон часто принимаются за соединение- свидетель, по отношению к которому рассчитывается миграционная способность других продуктов выветривания и почвообразования.
Не следует, однако, забывать, что инертность кварца, глин и циркона не абсолютна. При высоких степенях дисперсности, особенно в условиях циркуляции щелочных растворов, кремнезем кварца способен к постепенному, очень слабому растворению и миграции. При геологической продолжительности процессов это может привести к существенным результатам. Глины также в какой-то мере могут пептизироваться и мигрировать (ле- сиваж).
|
|
К содержанию книги: Ковда В.А. Биогеохимия почвенного покрова
|
Последние добавления:
Глазовская. Почвоведение и география почв
Сукачёв: Фитоценология - геоботаника
Сукачёв. БОЛОТОВЕДЕНИЕ И ПАЛЕОБОТАНИКА
Жизнь в почве Агрохимик и биохимик Д.Н. Прянишников
Костычев. ПОЧВОВЕДЕНИЕ Полынов. КОРА ВЫВЕТРИВАНИЯ
Тюрюканов. Биогеоценология. Биосфера. Почвы
Происхождение и эволюция растений