|
ПЕРЕЛЬМАН. БИОКОСНЫЕ СИСТЕМЫ |
Александр Ильич Перельман
Смотрите также:
Перельман - Геохимия ландшафта
Перельман - Круговорот атомов в геологии
Живое и биокосное вещество в биосфере
Биокосные системы. Формирование осадочных пород
Биографии геологов, почвоведов
|
Систематика ландшафтов на геохимической основе
Принципиальное отличие ландшафтов от почв, илов, кор выветривания, водопосиых горизонтов состоит в том, то в ландшафтах ведущее значение приобретает фотосинтез, в то время как в других биокосных телах он отсутствует (исключая верхние, освещенные солнцем, горизонты речной, озерной и морской воды) и сущность этих тел определяется процессами разложения органических веществ.
В ландшафтах разложение также играет важную роль, однако оно не определяет их главные особенности. Именно поэтому самые крупные единицы ландшафтов выделяются по характеру фотосинтеза — особенностям растительного покрова. Фотосинтез, как и разложение органических веществ, есть процесс окислительно-восстановительный, только здесь восстанавливаются углерод и водород, окисляется кислород (хотя это звучит и непривычно).
Кислород действительно при фотосинтезе окисляется, так как отдает электроны и переходит в свободное состояние. При разложении органических веществ, напротив, углерод и водород окисляются, а кислород или другие элементы (Fe3+, S6+) восстанавливаются — приобретают электроны.
Следовательно, во всех биокосных системах главная их особенность, геохимическая сущность, заключается в окислительно-восстановительных процессах. В ландшафтах ведущее значение имеют восстановление углерода, водорода, азота и окисление кислорода, в то время как в других биокосных телах, наоборот, основное значение имеют окисление углерода, водорода, азота и восстановление марганца, серы, кислорода, железа.
По особенностям образования живого вещества автор предложил выделять группы, типы и семейства ландшафтов. Особенно большое значение приобрели два параметра — общее количество живого вещества в ландшафте, или биомасса (Б) и годичная биологическая продуктивность — П. Их соотношение, т. е. П/Б, позволяет выделять группы ландшафтов (лесные, тундровые и т. д.), а соотношение логарифмов (Igll/lgS) — типы (таежные, влажные тропические и т. д.). Крупные таксоны геохимической классификации ландшафтов — группы, типы, семейства, — в общем, близки к единицам растительного покрова геоботаники и типам ландшафтов физической географии. К наиболее крупным единицам — группам — относятся лесные, степные, тундровые и пустынные ландшафты.
И с геохимических позиций рационально в типе таежных ландшафтов выделять семейства северной, средней и южной тайги. Такое соответствие не является чем-то неожиданным — ведь и геохимик и геоботаник, по сути дела, классифицируют одно и то же — продукты фотосинтеза, только критерии у них разные. Но если они правильно оценивают значение отдельных признаков, умеют выделять главное, то понятно, что выделяемые единицы должны совпадать или быть близкими друг к другу.
Анализируя различия ландшафтов в пределах семейств, например в северной тайге или южных черноземных степях, автор пришел к выводу, что здесь главная роль в дифференциации принадлежит геохимическим классам вод. Поэтому следующая единица геохимической классификации ландшафтов — класс — выделяется по особенностям вод. Так в классификации появились ландшафты сернокислого, кислого, содового, глеевого и прочих классов. Но химизм вод в разных частях ландшафта неодинаков: в почвах — один, в коре выветривания — другой и т. д. Очевидно, на основе принципа централизации при выделении классов необходимо исходить из геохимических особенностей растворов горизонта А водораздельных почв.
Сернокислые ландшафты возникают там, где окисляются сульфиды, формируется сернокислый класс коры выветривания, образуются сернокислые водоносные горизонты, сильнокислые почвы, сернокислые поверхностные воды. Почвы и континентальные отложения в сернокислых ландшафтах обычно обогащены металлами.
Особенности почв оказывают большое влияние на биологический круговорот атомов, в частности на флору и фауну. Например, М. А. Глазовская установила, что кора березы, растущей на солончаках в районе одного из медноколчеданных месторождений Южного Урала, содержала 0,06% меди (в золе) против 0,009% на безрудном участке. В сернокислых ландшафтах растения часто содержат много железа, цинка, серебра, свинца и других металлов.
Можно не сомневаться, что и животные в подобных ландшафтах отмечены своеобразным химическим составом. Естественно, что не все организмы могут приспособиться к столь необычным условиям (низкий рН, высокое содержание тяжелых металлов в почве). Поэтому и растительные сообщества (фитоцеиозы), и сообщества животных (зооценозы) сильно отличаются в сернокислых ландшафтах от ландшафтов других классов (иной видовой состав, обилие и т. д.).
Следовательно, своеобразная геохимическая обстановка сернокислых ландшафтов создала особые условия эволюции, весьма возможно, что это особые центры видообразования, где происходил отбор на химической основе. Изучение сернокислых ландшафтов поэтому представляет большой общебиологический интерес; подобные исследования, несомненно, прольют свет на многие загадки эволюции и видообразования. Весьма возможно, что некоторые виды организмов с высоким содержанием меди, цинка, свинца, серебра, золота и других металлов возникли в сернокислых ландшафтах.
Конечно, класс — это таксономическая единица невысокого ранга, и поэтому в тайге сернокислые ландшафты относятся к таежному типу, в тундре — к тундровому, в пустыне — к пустынному. Интересно, что самые кислые воды характерны именно для пустынь — там выпадает очень мало атмосферных осадков и серная кислота, образующаяся при окислении пирита и других сульфидов, почти не разбавляется.
Таким образом, все биокосные тела на участке окисляющегося сульфидного месторождения обогащены рудными элементами; здесь в почвах, водах, растениях образуются так называемые вторичные ореолы рассеяния, радиусы которых достигают многих сотен и даже тысяч метров. Поэтому определяя содержание рудных элементов в почвах, водах и растениях, можно искать месторождения полезных ископаемых. Теоретические основы подобных геохимических методов поисков хорошо разработаны, они применяются в СССР и за рубежом.
Сернокислые ландшафты возникают не только на участках окисления сульфидных руд, но и на пирити- зированных глинах и сланцах, на серных месторождениях. В вулканических районах также встречаются сернокислые ландшафты, известны здесь и солянокислые.
Сернокислые ландшафты возникают и в результате хозяйственной деятельности. Например, в районах металлургических комбинатов, перерабатывающих сульфидные руды, в атмосферу поступает сернистый газ, который, окисляясь до серного ангидрида и соединяясь с водяными парами, дает серную кислоту. Поэтому в таких районах идут «кислые дожди», понижается рН почв и вод, местами в реках гибнет рыба, изреживается растительный покров. Схему сернокислого ландшафта изобразил В. Г. Прохоров (26). Эффективная борьба с загрязнением окружающей среды позволяет рекультивировать искусственные сернокислые ландшафты, превратить их в ландшафты другого класса. При строительстве новых предприятий следует применять прогрессивную технологию, исключающую сернокислое загрязнение окружающей среды.
Кислые ландшафты господствуют в лесной и тундровой группах, но встречаются также в горных лугах и других типах ландшафта. Не характерны они только для степей, пустынь и сухих саванн.
В районах влажного климата при формировании ландшафта на бескарбонатных породах кислые продукты разложения растительных остатков в почвах не могут быть полностью нейтрализованы и верхние горизонты почв приобретают кислую реакцию, рН понижается до 6—5, иногда даже до 4. Это подзолистые, бурые лесные, лате- ритные, красноземные, горно-луговые и прочие почвы. Грунтовые и речные воды в таких ландшафтах могут быть и слабокислыми, и нейтральными, и даже слабощелочными.
В кислой среде хорошо мигрируют многие металлы, особенно в комплексе с органическими соединениями. Поэтому в элювиальных почвах развивается кислое выщелачивание, они обедняются подвижными элементами, которые становятся дефицитными для растений и животных. Особенно характерен дефицит кальция — этого важного элемента скелета многих животных. Дикие и домашние животные в кислых ландшафтах часто имеют малые размеры, хрупкий скелет (ломкость костей), болеют рахитом и т. д. Птицы здесь несут мало яиц, скорлупа их тонкая. В кислых ландшафтах наблюдается дефицит и других элементов, с чем связана характерная реакция флоры, фауны, а местами и человека.
Недостатком фтора в водах объясняется широкое распространение кариеса зубов, недостатком кобальта — малокровие домашних животных, недостатком азота, фосфора, калия, магния — низкие урожаи и болезни растений. Особенно большой дефицит наблюдается в кислых ландшафтах влажных тропиков и тайги, занимающих огромные пространства на земном шаре. Эти ландшафты, вероятно, были важными центрами видообразования, в них формировались виды организмов, хорошо приспособленные к кислой среде и дефициту элементов (чай, ель, трава кислица и др.). В кислых ландшафтах наблюдается также избыток некоторых элементов, оказывающих вредное влияние на организмы (марганец, водородный ион и др.).
Кальциевые ландшафты характерны почти для всех типов ландшафтов, но преобладают они в черноземных степях. Почвы в ландшафтах кальциевого класса содержат много подвижного кальция в виде СаС03 или обменного кальция. Поэтому кислые продукты разложения органических остатков полностью нейтрализуются, почвы имеют нейтральную или слабощелочную реакцию, кислое выщелачивание отсутствует и металлы малоподвижны. Организмы здесь, как правило, полностью обеспечены кальцием, и болезней, связанных с его дефицитом, не наблюдается. В таких ландшафтах воды богаты кальцием, они чистые и прозрачные, почти не содержат растворенных коллоидов, так как кальций сильный коагулятор. Многие металлы здесь мигрируют слабо, анионогенньте элементы — сильно (например, молибден).
В тайге и широколиственных лесах наряду с кислыми распространены и кальциевые ландшафты, например в районах распространения известняков, мергелей, крас- ноцветов, карбонатной морены (27). Биологический круговорот атомов здесь всегда протекает интенсивнее, Б и Я больше. Животные получают достаточное количество кальция — их размеры больше, скелет крепче, яйца имеют более толстую скорлупу, у улиток и других моллюсков более массивные раковины и т. д. Эти ландшафты характеризуются большим плодородием почв; с них начинались земледельческое освоение тайги, развитие культуры, рост населения (Пермское Приуралье, районы города Каргополя в Архангельской области и др.).
В сухих степях и пустынях кальциевые ландшафты характерны для мелкосопочника и гор, реже они встречаются на равнинах.
Весьма вероятно, что кальциевые ландшафты были центрами формирования кальциефильных видов и родов растений, которые давно уже выделены ботаниками.
Соленосные ландшафты распространены мало и только в пустынях, где в течение длительного времени может существовать соленосная кора выветривания. Организмы здесь поставлены в крайне неблагоприятные условия, так как безводье сочетается с сильным засолением почв. Поэтому принадлежащие к данному классу соленосные горы производят впечатление крайней пустынности. Один из таких хребтов в Ферганской долине называется даже Махаутаук, что в переводе означает «горы прокаженных».
Ландшафты содового класса типичны для лесостепи, степей и саванн, где они обычно встречаются на террасах рек, плоских равнинах, в озерных котловипах. Нередко это — пятна площадью в десятки и сотни квадратных метров, которые, как оспины, усеивают степные равнины. К этим ландшафтам относятся солонцы и содовые озера, воды которых имеют рН более 8,5 и содержат соду. В подобных условиях легко мигрируют анионогенные элементы (кремний, молибден, селен и др.), причем многие малоподвижные металлы входят в состав растворимых анионов (иттрий, бериллий, цинк, скандий и т. д.). С другой стороны, железо, кальций, магний, стронций, барий практик чески неподвижны. Поэтому организмы в содовых ландшафтах поставлены в исключительно своеобразные условия сильнощелочной среды, дефицита многих важнейших элементов (особенно железа, кальция, магния), повышенного содержания непривычных редких элементов. Все это определяет возможность энергичного отбора на химической основе, формирования особых видов. К сожалению, эта интереснейшая проблема почти не исследована.
Кислые глеевые ландшафты широко распространены в районах влажного климата, равнинного рельефа и бескарбонатных пород. К ним относится большая часть равнинной тундры, многие таежно-мерзлотные ландшафты Восточной Сибири, таежно-болотистые равнины Западной Сибири и европейской части СССР, лесисто-болотистые низменности влажных тропиков и в их числе значительная часть Амазонии. Во всех этих районах в почвах развито сильное оглеение, легко мигрируют железо и марганец, в водах много растворенных органических веществ, реки и озера имеют черную и коричневую воду. Прекрасное описание природы таких ландшафтов в Подмосковье дал К. Г. Паустовский в своей повести «Мещерская сторона». Главным дефицитным элементом здесь является свободный кислород, недостаток которого определяет низкие величины биомассы (Б) и продуктивности (П). Интересно, однако, что их соотношение в виде показателя K=lgII/lgB остается постоянным, что и позволяет относить кислые и кислые глеевые таежные ландшафты к одному типу
Помимо кислорода в ландшафтах кислого глеевого класса дефицитны и другие элементы, в них избыточны вода, водородный ион, вероятно, местами железо и марганец. Условия жизни для большинства организмов здесь менее благоприятны, чем в кислых ландшафтах. В хозяйственном отношении ландшафты кислого глеевого класса освоены слабо, население в них редкое. Только коренная мелиорация (осушение) способна повысить их продуктивность.
Ландшафты кислого глеевого класса были широко распространены и в геологическом прошлом, особенно в конце девона и в каменноугольном периоде, в палеогене. В то время на заболоченных тропических низменностях росли леса, остатки которых дали залежи угля, известные во многих районах земного шара, в том числе и на территории нашей страны.
Проблема влияния кислой глеевой среды на эволюцию жизни на Земле также исключительно интересна. Будущим исследователям следует особое внимание обратить на роль растворенного органического вещества в эволюции — ведь животные этих ландшафтов в течение многих поколений пили «коричневую воду», содержащую сотни различных органических соединений, многообразное влияние которых на жизненные процессы можно считать установленным (в водах найдены и канцерогены, и вещества типа витаминов, и многие другие физиологически активные соединения).
Ландшафты карбонатного глеевого класса встречаются в болотах тундры, тайги, широколиственных лесов, влажных тропиков на участках распространения карбонатных пород, где в почвах развито карбонатное оглеение. Это также плавни южнорусских рек, некоторые тугаи (пойменные леса) в долинах рек Средней Азии, болота лесостепи, степей.
И в этих ландшафтах главный дефицитный элемент — кислород, а главный тип мелиорации — осушение. После осушения многие территории очень пригодны для земледелия. Некоторые густонаселенные низменности южных стран в прошлом были ландшафтами карбонатного глеевого класса.
Типоморфными элементами этих ландшафтов являются кальций, железо (Fe2+), местами марганец (Мп2+), воды также содержат растворенное органическое вещество, хотя и в меньших количествах, чем в кислых глеевых болотах. Геохимия этих ландшафтов почти не изучена, их роль в эволюции жизни на Земле — тоже. К содовым глеевым ландшафтам относятся некоторые болота и луга в районах развития солонцов и содовых солончаков. В геохимическом отношении они почти не изучены, несмотря на важность таких исследований.
Ландшафты сульфидных (<сероводородных) классов характерны для морских побережий, подтопленных солеными водами, для солончаков и соленых озер степей и пустынь. Наиболее распространен соленосно-сульфидный класс, который известен почти во всех типах ландшафтов: от тундр до пустынь и влажных тропиков. Геохимию лесных соленосно-сульфидных болот влажных тропиков — мангров — охарактеризовала М. А. Глазовская. Это периодически затопляемые морем болотистые низменности, где в почвах развивается десульфуризация за счет восстановления сульфатов морской воды, почва приобретает черный цвет и имеет запах сероводорода. Местами сероводород заражает приземный слой воздуха. В результате размыва красноземных и латеритных почв возвышенностей мангры обогащаются взвесью, содержащей много гидроокислов железа, которые восстанавливаются в почве с образованием черного гидротроилита. Главный дефицитный элемент мангров — кислород; на это указывают, в частности, воздушные корни растений.
Условия жизни в манграх менее благоприятны, чем в кислом тропическом лесу, и поэтому величины Б и П меньше: биомасса такая же, как в северной тайге (1200 ц/га). Однако соотношение между Б и П общее для типа тропических лесов:
Это и дает основание включать мангры в тип ландшафтов тропических лесов. Роль мангров как центров видообразования (отбор на химической основе) еще подлежит изучению.
|
|
К содержанию книги: Биокосные системы Земли
|
Последние добавления:
Вильямс. Травопольная система земледелия
Качинский - Жизнь и свойства почвы