Систематика ландшафтов на геохимической основе. Сернокислые и ландшафты кислого глеевого класса

Вся электронная библиотека      Поиск по сайту

 

ПЕРЕЛЬМАН. БИОКОСНЫЕ СИСТЕМЫ

ЛАНДШАФТЫ

 

Александр Ильич Перельман

 

Смотрите также:

 

Перельман - Геохимия ландшафта

 

Перельман - Круговорот атомов в геологии

 

Живое и биокосное вещество в биосфере

 

Биокосные системы. Формирование осадочных пород

 

Геология

геология

Основы геологии

 

Геолог Ферсман

 

Геохимия - химия земли

 

Гидрогеохимия. Химия воды

 

Минералогия

минералы

 

Почва и почвообразование

 

Почвоведение. Типы почв

почвы

 

Химия почвы

 

Круговорот атомов в природе

 

Книги Докучаева

докучаев

 

Происхождение жизни

 

Вернадский. Биосфера

биосфера

 

Биология

 

Эволюция биосферы

 

растения

 

Геоботаника

 

 Биографии геологов, почвоведов

Биографии почвоведов

 

Эволюция

 

Систематика ландшафтов на геохимической основе

 

Принципиальное отличие ландшафтов от почв, илов, кор выветривания, водопосиых горизонтов состоит в том, то в ландшафтах ведущее значение приобретает фотосинтез, в то время как в других биокосных телах он отсутствует (исключая верхние, освещенные солнцем, горизонты речной, озерной и морской воды) и сущность этих тел определяется процессами разложения органических веществ.

 

В ландшафтах разложение также играет важную роль, однако оно не определяет их главные особенности. Именно поэтому самые крупные единицы ландшафтов выделяются по характеру фотосинтеза — особенностям растительного покрова. Фотосинтез, как и разложение органических веществ, есть процесс окислительно-восстановительный, только здесь восстанавливаются углерод и водород, окисляется кислород (хотя это звучит и непривычно).

 

Кислород действительно при фотосинтезе окисляется, так как отдает электроны и переходит в свободное состояние. При разложении органических веществ, напротив, углерод и водород окисляются, а кислород или другие элементы (Fe3+, S6+) восстанавливаются — приобретают электроны.

 

Следовательно, во всех биокосных системах главная их особенность, геохимическая сущность, заключается в окислительно-восстановительных процессах. В ландшафтах ведущее значение имеют восстановление углерода, водорода, азота и окисление кислорода, в то время как в других биокосных телах, наоборот, основное значение имеют окисление углерода, водорода, азота и восстановление марганца, серы, кислорода, железа.

 

По особенностям образования живого вещества автор предложил выделять группы, типы и семейства ландшафтов. Особенно большое значение приобрели два параметра — общее количество живого вещества в ландшафте, или биомасса (Б) и годичная биологическая продуктивность — П. Их соотношение, т. е. П/Б, позволяет выделять группы ландшафтов (лесные, тундровые и т. д.), а соотношение логарифмов (Igll/lgS) — типы (таежные, влажные тропические и т. д.). Крупные таксоны геохимической классификации ландшафтов — группы, типы, семейства, — в общем, близки к единицам растительного покрова геоботаники и типам ландшафтов физической географии. К наиболее крупным единицам — группам — относятся лесные, степные, тундровые и пустынные ландшафты.

 

И с геохимических позиций рационально в типе таежных ландшафтов выделять семейства северной, средней и южной тайги. Такое соответствие не является чем-то неожиданным — ведь и геохимик и геоботаник, по сути дела, классифицируют одно и то же — продукты фотосинтеза, только критерии у них разные. Но если они правильно оценивают значение отдельных признаков, умеют выделять главное, то понятно, что выделяемые единицы должны совпадать или быть близкими друг к другу.

 

Анализируя различия ландшафтов в пределах семейств, например в северной тайге или южных черноземных степях, автор пришел к выводу, что здесь главная роль в дифференциации принадлежит геохимическим классам вод. Поэтому следующая единица геохимической классификации ландшафтов — класс — выделяется по особенностям вод. Так в классификации появились ландшафты сернокислого, кислого, содового, глеевого и прочих классов. Но химизм вод в разных частях ландшафта неодинаков: в почвах — один, в коре выветривания — другой и т. д. Очевидно, на основе принципа централизации при выделении классов необходимо исходить из геохимических особенностей растворов горизонта А водораздельных почв.

 

Сернокислые ландшафты возникают там, где окисляются сульфиды, формируется сернокислый класс коры выветривания, образуются сернокислые водоносные горизонты, сильнокислые почвы, сернокислые поверхностные воды. Почвы и континентальные отложения в сернокислых ландшафтах обычно обогащены металлами.

 

Особенности почв оказывают большое влияние на биологический круговорот атомов, в частности на флору и фауну.

Например, М. А. Глазовская установила, что кора березы, растущей на солончаках в районе одного из медноколчеданных месторождений Южного Урала, содержала 0,06% меди (в золе) против 0,009% на безрудном участке. В сернокислых ландшафтах растения часто содержат много железа, цинка, серебра, свинца и других металлов.

 

Можно не сомневаться, что и животные в подобных ландшафтах отмечены своеобразным химическим составом. Естественно, что не все организмы могут приспособиться к столь необычным условиям (низкий рН, высокое содержание тяжелых металлов в почве). Поэтому и растительные сообщества (фитоцеиозы), и сообщества животных (зооценозы) сильно отличаются в сернокислых ландшафтах от ландшафтов других классов (иной видовой состав, обилие и т. д.).

 

Следовательно, своеобразная геохимическая обстановка сернокислых ландшафтов создала особые условия эволюции, весьма возможно, что это особые центры видообразования, где происходил отбор на химической основе. Изучение сернокислых ландшафтов поэтому представляет большой общебиологический интерес; подобные исследования, несомненно, прольют свет на многие загадки эволюции и видообразования. Весьма возможно, что некоторые виды организмов с высоким содержанием меди, цинка, свинца, серебра, золота и других металлов возникли в сернокислых ландшафтах.

 

Конечно, класс — это таксономическая единица невысокого ранга, и поэтому в тайге сернокислые ландшафты относятся к таежному типу, в тундре — к тундровому, в пустыне — к пустынному. Интересно, что самые кислые воды характерны именно для пустынь — там выпадает очень мало атмосферных осадков и серная кислота, образующаяся при окислении пирита и других сульфидов, почти не разбавляется.

 

Таким образом, все биокосные тела на участке окисляющегося сульфидного месторождения обогащены рудными элементами; здесь в почвах, водах, растениях образуются так называемые вторичные ореолы рассеяния, радиусы которых достигают многих сотен и даже тысяч метров. Поэтому определяя содержание рудных элементов в почвах, водах и растениях, можно искать месторождения полезных ископаемых. Теоретические основы подобных геохимических методов поисков хорошо разработаны, они применяются в СССР и за рубежом.

 

Сернокислые ландшафты возникают не только на участках окисления сульфидных руд, но и на пирити- зированных глинах и сланцах, на серных месторождениях. В вулканических районах также встречаются сернокислые ландшафты, известны здесь и солянокислые.

 

Сернокислые ландшафты возникают и в результате хозяйственной деятельности. Например, в районах металлургических комбинатов, перерабатывающих сульфидные руды, в атмосферу поступает сернистый газ, который, окисляясь до серного ангидрида и соединяясь с водяными парами, дает серную кислоту. Поэтому в таких районах идут «кислые дожди», понижается рН почв и вод, местами в реках гибнет рыба, изреживается растительный покров. Схему сернокислого ландшафта изобразил В. Г. Прохоров (26). Эффективная борьба с загрязнением окружающей среды позволяет рекультивировать искусственные сернокислые ландшафты, превратить их в ландшафты другого класса. При строительстве новых предприятий следует применять прогрессивную технологию, исключающую сернокислое загрязнение окружающей среды.

 

Кислые ландшафты господствуют в лесной и тундровой группах, но встречаются также в горных лугах и других типах ландшафта. Не характерны они только для степей, пустынь и сухих саванн.

 

В районах влажного климата при формировании ландшафта на бескарбонатных породах кислые продукты разложения растительных остатков в почвах не могут быть полностью нейтрализованы и верхние горизонты почв приобретают кислую реакцию, рН понижается до 6—5, иногда даже до 4. Это подзолистые, бурые лесные, лате- ритные, красноземные, горно-луговые и прочие почвы. Грунтовые и речные воды в таких ландшафтах могут быть и слабокислыми, и нейтральными, и даже слабощелочными.

 

В кислой среде хорошо мигрируют многие металлы, особенно в комплексе с органическими соединениями. Поэтому в элювиальных почвах развивается кислое выщелачивание, они обедняются подвижными элементами, которые становятся дефицитными для растений и животных. Особенно характерен дефицит кальция — этого важного элемента скелета многих животных. Дикие и домашние животные в кислых ландшафтах часто имеют малые размеры, хрупкий скелет (ломкость костей), болеют рахитом и т. д. Птицы здесь несут мало яиц, скорлупа их тонкая. В кислых ландшафтах наблюдается дефицит и других элементов, с чем связана характерная реакция флоры, фауны, а местами и человека.

 

Недостатком фтора в водах объясняется широкое распространение кариеса зубов, недостатком кобальта — малокровие домашних животных, недостатком азота, фосфора, калия, магния — низкие урожаи и болезни растений. Особенно большой дефицит наблюдается в кислых ландшафтах влажных тропиков и тайги, занимающих огромные пространства на земном шаре. Эти ландшафты, вероятно, были важными центрами видообразования, в них формировались виды организмов, хорошо приспособленные к кислой среде и дефициту элементов (чай, ель, трава кислица и др.). В кислых ландшафтах наблюдается также избыток некоторых элементов, оказывающих вредное влияние на организмы (марганец, водородный ион и др.).

 

Кальциевые ландшафты характерны почти для всех типов ландшафтов, но преобладают они в черноземных степях. Почвы в ландшафтах кальциевого класса содержат много подвижного кальция в виде СаС03 или обменного кальция. Поэтому кислые продукты разложения органических остатков полностью нейтрализуются, почвы имеют нейтральную или слабощелочную реакцию, кислое выщелачивание отсутствует и металлы малоподвижны. Организмы здесь, как правило, полностью обеспечены кальцием, и болезней, связанных с его дефицитом, не наблюдается. В таких ландшафтах воды богаты кальцием, они чистые и прозрачные, почти не содержат растворенных коллоидов, так как кальций сильный коагулятор. Многие металлы здесь мигрируют слабо, анионогенньте элементы — сильно (например, молибден).

 

В тайге и широколиственных лесах наряду с кислыми распространены и кальциевые ландшафты, например в районах распространения известняков, мергелей, крас- ноцветов, карбонатной морены (27). Биологический круговорот атомов здесь всегда протекает интенсивнее, Б и Я больше. Животные получают достаточное количество кальция — их размеры больше, скелет крепче, яйца имеют более толстую скорлупу, у улиток и других моллюсков более массивные раковины и т. д. Эти ландшафты характеризуются большим плодородием почв; с них начинались земледельческое освоение тайги, развитие культуры, рост населения (Пермское Приуралье, районы города Каргополя в Архангельской области и др.).

 

В сухих степях и пустынях кальциевые ландшафты характерны для мелкосопочника и гор, реже они встречаются на равнинах.

 

Весьма вероятно, что кальциевые ландшафты были центрами формирования кальциефильных видов и родов растений, которые давно уже выделены ботаниками.

 

Соленосные ландшафты распространены мало и только в пустынях, где в течение длительного времени может существовать соленосная кора выветривания. Организмы здесь поставлены в крайне неблагоприятные условия, так как безводье сочетается с сильным засолением почв. Поэтому принадлежащие к данному классу соленосные горы производят впечатление крайней пустынности. Один из таких хребтов в Ферганской долине называется даже Махаутаук, что в переводе означает «горы прокаженных».

 

Ландшафты содового класса типичны для лесостепи, степей и саванн, где они обычно встречаются на террасах рек, плоских равнинах, в озерных котловипах. Нередко это — пятна площадью в десятки и сотни квадратных метров, которые, как оспины, усеивают степные равнины. К этим ландшафтам относятся солонцы и содовые озера, воды которых имеют рН более 8,5 и содержат соду. В подобных условиях легко мигрируют анионогенные элементы (кремний, молибден, селен и др.), причем многие малоподвижные металлы входят в состав растворимых анионов (иттрий, бериллий, цинк, скандий и т. д.). С другой стороны, железо, кальций, магний, стронций, барий практик чески неподвижны. Поэтому организмы в содовых ландшафтах поставлены в исключительно своеобразные условия сильнощелочной среды, дефицита многих важнейших элементов (особенно железа, кальция, магния), повышенного содержания непривычных редких элементов. Все это определяет возможность энергичного отбора на химической основе, формирования особых видов. К сожалению, эта интереснейшая проблема почти не исследована.

 

Кислые глеевые ландшафты широко распространены в районах влажного климата, равнинного рельефа и бескарбонатных пород. К ним относится большая часть равнинной тундры, многие таежно-мерзлотные ландшафты Восточной Сибири, таежно-болотистые равнины Западной Сибири и европейской части СССР, лесисто-болотистые низменности влажных тропиков и в их числе значительная часть Амазонии. Во всех этих районах в почвах развито сильное оглеение, легко мигрируют железо и марганец, в водах много растворенных органических веществ, реки и озера имеют черную и коричневую воду. Прекрасное описание природы таких ландшафтов в Подмосковье дал К. Г. Паустовский в своей повести «Мещерская сторона». Главным дефицитным элементом здесь является свободный кислород, недостаток которого определяет низкие величины биомассы (Б) и продуктивности (П). Интересно, однако, что их соотношение в виде показателя K=lgII/lgB остается постоянным, что и позволяет относить кислые и кислые глеевые таежные ландшафты к одному типу

 

Помимо кислорода в ландшафтах кислого глеевого класса дефицитны и другие элементы, в них избыточны вода, водородный ион, вероятно, местами железо и марганец. Условия жизни для большинства организмов здесь менее благоприятны, чем в кислых ландшафтах. В хозяйственном отношении ландшафты кислого глеевого класса освоены слабо, население в них редкое. Только коренная мелиорация (осушение) способна повысить их продуктивность.

 

Ландшафты кислого глеевого класса были широко распространены и в геологическом прошлом, особенно в конце девона и в каменноугольном периоде, в палеогене. В то время на заболоченных тропических низменностях росли леса, остатки которых дали залежи угля, известные во многих районах земного шара, в том числе и на территории нашей страны.

 

Проблема влияния кислой глеевой среды на эволюцию жизни на Земле также исключительно интересна. Будущим исследователям следует особое внимание обратить на роль растворенного органического вещества в эволюции — ведь животные этих ландшафтов в течение многих поколений пили «коричневую воду», содержащую сотни различных органических соединений, многообразное влияние которых на жизненные процессы можно считать установленным (в водах найдены и канцерогены, и вещества типа витаминов, и многие другие физиологически активные соединения).

 

Ландшафты карбонатного глеевого класса встречаются в болотах тундры, тайги, широколиственных лесов, влажных тропиков на участках распространения карбонатных пород, где в почвах развито карбонатное оглеение. Это также плавни южнорусских рек, некоторые тугаи (пойменные леса) в долинах рек Средней Азии, болота лесостепи, степей.

 

И в этих ландшафтах главный дефицитный элемент — кислород, а главный тип мелиорации — осушение. После осушения многие территории очень пригодны для земледелия. Некоторые густонаселенные низменности южных стран в прошлом были ландшафтами карбонатного глеевого класса.

 

Типоморфными элементами этих ландшафтов являются кальций, железо (Fe2+), местами марганец (Мп2+), воды также содержат растворенное органическое вещество, хотя и в меньших количествах, чем в кислых глеевых болотах. Геохимия этих ландшафтов почти не изучена, их роль в эволюции жизни на Земле — тоже.

К содовым глеевым ландшафтам относятся некоторые болота и луга в районах развития солонцов и содовых солончаков. В геохимическом отношении они почти не изучены, несмотря на важность таких исследований.

 

Ландшафты сульфидных (<сероводородных) классов характерны для морских побережий, подтопленных солеными водами, для солончаков и соленых озер степей и пустынь. Наиболее распространен соленосно-сульфидный класс, который известен почти во всех типах ландшафтов: от тундр до пустынь и влажных тропиков. Геохимию лесных соленосно-сульфидных болот влажных тропиков — мангров — охарактеризовала М. А. Глазовская. Это периодически затопляемые морем болотистые низменности, где в почвах развивается десульфуризация за счет восстановления сульфатов морской воды, почва приобретает черный цвет и имеет запах сероводорода. Местами сероводород заражает приземный слой воздуха. В результате размыва красноземных и латеритных почв возвышенностей мангры обогащаются взвесью, содержащей много гидроокислов железа, которые восстанавливаются в почве с образованием черного гидротроилита. Главный дефицитный элемент мангров — кислород; на это указывают, в частности, воздушные корни растений.

 

Условия жизни в манграх менее благоприятны, чем в кислом тропическом лесу, и поэтому величины Б и П меньше: биомасса такая же, как в северной тайге (1200 ц/га). Однако соотношение между Б и П общее для типа тропических лесов:

 

Это и дает основание включать мангры в тип ландшафтов тропических лесов.

Роль мангров как центров видообразования (отбор на химической основе) еще подлежит изучению.

 

 

 

К содержанию книги: Биокосные системы Земли

 

 

Последние добавления:

 

БИОЛОГИЯ ПОЧВ

 

Вильямс. Травопольная система земледелия

 

История русского почвоведения

 

Качинский - Жизнь и свойства почвы

 

Вернадский - ЖИВОЕ ВЕЩЕСТВО