|
Анри Пуанкаре - НОВЫЕ МЕТОДЫ В НЕБЕСНОЙ МЕХАНИКЕ. Вычисления эфемерид |
Мы приводим вступление к мемуару Пуанкаре «О кривых, определяемых дифференциальными уравнениями» (1889) и предисловие к его кпиге «Новые методы в небесной механике» (1892).
НОВЫЕ МЕТОДЫ В НЕБЕСНОЙ МЕХАНИКЕПредисловие
Задача трех тел настолько важна для астрономии и в то же время настолько трудна, что все усилия геометров уже давно устремлены в этом направлении. Полное и точное интегрирование является, очевидно, невозможным и потому пришлось прибегнуть к приближенным методам. Сначала были использованы методы, состоящие в разложении в ряды по степеням масс. В начале нашего века достижения Лагранжа и Лапласа, а позднее вычисления Леверрье довели эти методы до такой степени совершенства, что до настоящего времени они были достаточны для всех практических нужд. Я мог бы добавить, что они будут достаточны, несмотря на некоторые расхождения в деталях, еще в течение долгого времени, однако не вечно, как это легко себе уяснить.
Конечная цель небесной механики состоит в разрешении великого вопроса: может ли закон Ньютона, и только он один, объяснить все астрономические явления; единственным способом разрешения этого вопроса является проведение насколько возможно точных наблюдений и сравнение их с результатами вычислений. Эти вычисления могут быть лишь приближенными и, кроме того, нет никакого смысла вычислять большее количество десятичных знаков, чем могут дать наблюдения. Поэтому бесполезно требовать от вычислений большей точности, чем от наблюдений, но нельзя от вычислений требовать и меньшей точности. Поэтому приближение, которое мы можем считать удовлетворительным сегодня, окажется недостаточным через несколько веков. Действительно, даже если сделать весьма маловероятное предположение, что измерите л ьпые приборы^не будут более совершенствоваться, уже одно накопление наблюдений в течение нескольких веков позволит определить с большей точностью коэффициенты различных неравенств. Эта эпоха, когда придется отказаться от старых методов, конечно, еще очень далека, но теоретик должен ее предвидеть, так как труды теоретика должны опережать, и часто на много лет, труды вычислителей.
Не нужно думать, что для получения эфемерид с большой точностью в течение длинного ряда лет достаточно вычислить бблыпее число членов в рядах, к которым приводят старые методы. Действительно, методы, состоящие в разложении координат небесных тел по степеням масс, носят общие черты, которые мешают их применению для вычисления эфемерид на долгий срок. Полученные ряды содержат члены, называемые вековыми , в которых время входит вне знака синуса или косинуса. Отсюда следует, что сходимость этих рядов может стать сомнительной для больших значений времени t .
Наличие этих вековых членов связано не с природой задачи, а только с применяемым методом. Действительно, легко видеть, что если истинное выражение координаты содержит член с sin amt, где а – константа, am – одна из масс, то при разложении по степеням т появятся вековые члены amt‑(a3m3t3)/6 + ... и присутствие этих членов дает весьма ложное представление о настоящем виде изучаемой функции.
Все астрономы уже давно ощущают это. Сами создатели небесной механики во всех случаях, когда требовалось получить формулы, пригодные на длительный срок, как, например, для вычисления вековых неравенств, должны были действовать иначе и отказаться от разложений просто по степеням масс. Таким образом, изучение вековых неравенств при помощи системы линейных дифференциальных уравнений с постоянными коэффициентами можно считать относящимся скорее к новым, чем к старым методам.
Точно так же все усилия геометров во второй половине века имеют •своей главной целыо устранение вековых членов. Первый серьезный шаг в этом направлении был сделан Делоне, чей метод, безусловно, принесет еще много пользы. Мы упомянем далее исследования Хилла по теории Луны (American Journal of Mathematics, v. I, Acta Mathematica, t. VIII). В этой работе, к сожалению, неоконченной, можно увидеть зачатки большей части достижений науки, сделанных с того времени.
Но ученым, который оказал этой ветви астрономии самые важные услуги, является, несомненно, Гильден. Его работы касаются всех сторон небесной механики, он умело использует все возможности современного ‑анализа. Гильден добился того, что из его разложений совершенно исчезли все вековые члены, которые так затрудняли его предшественников. С другой стороны, Линдштедт предложил иной метод, значительно более простой, чем метод Гильдена, но менее общий, поскольку его невозможно применить при наличии членов, которые Гильден назвал критическими .
Благодаря усилиям этих ученых, трудности, происходящие от вековых членов, могут считаться полностью преодоленными, и новые методы, вероятно, будут еще долго удовлетворять требованиям практики.
Однако не все еще сделано. Большая часть этих разложений не сходится в том смысле, в котором геометры понимают это слово. Конечно в настоящее время это не имеет большого значения, поскольку мы уверены, что вычисление первых членов дает весьма удовлетворительное приближение. Но не менее верно и то, что эти разложения не могут давать сколь угодно точное приближение. Поэтому наступит момент, когда они станут неудовлетворительными. Краме того, некоторые теоретические выводы, которые можно было бы сделать па основании вида этих рядов, не будут законными вследствие их расходимости. Так, например, они не могут служить для разрешения вопроса об устойчивости солнечпой системы. Исследование сходимости этих разложений должно привлечь внимание геометров по причинам, которые я изложил и, кроме того, по следующей причине: цель небесной механики не будет достигнута, если мы вычислим эфемериды более пли менее приближенно, не отдавая себе отчета в степени полученной точности. Действительно, если мы обнаружим расхождение между этими эфемеридами и наблюдениями, необходимо, чтобы можно было установить, виноват ли в этом закон Ньютона или все можно объяснить несовершенством теории. Поэтому важпо определить верхний предел допущенной ошибки, на что, может быть, недостаточно обращали внимание до последнего времени.
Оказывается, методы, которые позволяют исследовать сходимость, дают нам в то же время этот верхний предел, что повышает их значение и практическую ценность. Поэтому не следует удивляться, что я отвожу этим методам такое большое место в этой книге, хотя, быть может, я извлек из них не все, что они могут дать.
Я сам занимался этими вопросами и посвятил им мемуар, который появился в XIII томе «Acta Mathematica»; в особенности я старался осветить те немногочисленные результаты, относящиеся к задаче трех тел, которые могут быть установлены с абсолютной строгостью, требуемой математикой. Только эта строгость придает некоторую ценность моим теоремам о периодических, асимптотических и двоякоасимптотических решениях. Действительно, здесь можно будет найти твердую основу, на которую можно спокойно опереться, а это представляет ценность для всех исследований, даже для тех, где не требуется такой строгости.
С другой стороны, мне казалась, что мои результаты позволили мне объединить в некий синтез большинство новых, недавно предложенных методов, и это побудило меня предпринять настоящий труд. В предлагаемом первом томе я должен был ограничиться изучением периодических решений первого рода, доказательством несуществования однозначных интегралов, а также изложением и обсуждением методов Линдштедта.
Следующие тома я посвящу обсуждению методов Гильдена, теории интегральных инвариантов, вопросам устойчивости, изучению периодических решений второго рода, асимптотических и двоякоасимптотических решений и, наконец, новым результатам, которые я смогу получить к моменту опубликования этих томов. Кроме того, я буду принужден, без сомнения, вернуться в последующих томах к вопросам, рассмотренным в I томе. Правда, логика при этом немного пострадает, но нельзя поступать иначе в отрасли науки, которая находится в стадии становления и в которой новые достижения следуют непрерывно одно за другим. Поэтому я заранее прошу извинить меня.
Последнее замечание: обычно результаты представляют в форме, наиболее удобной для вычисления эфемерид, выражая координаты в виде явных функций времени. Этот путь представляет, очевидно, значительные преимущества, и большею частью я по возможности ему следовал; однако я так поступал не всегда и часто представлял результаты в форме интегралов, т.е. в виде неявных соотношений между коордипа‑тами пли между координатами и временем. Прежде всего, эти соотношения можно использовать для проверки формул, дающих координаты в явном виде. Но это не все; истинная цель небесной механики состоит пе в вычислении эфемерид, так как в этом случае можно было бы удовлетвориться предвидением на короткий срок, а в том, чтобы убедиться, достаточно ли закона Ньютона для объяснения всех явлений. С этой точки зрения неявные соотношения, о которых я говорил выше, могут оказаться столь же полезными, как и явные формулы. Действительно, достаточно в них подставить наблюденные значения координат и проверить, удовлетворяются ли они.
|
К содержанию: Сергей Петрович Капица: Жизнь науки
Смотрите также:
математик Анри Пуанкаре, физик Анри Беккерель
проверить предположение А. Пуанкаре и исследовать флюоресценцию
Мах. Тезис Маха. Отношение Эйнштейна к философии Маха.
Вторая, так называемый конвенционализм, принадлежит Анри Пуанкаре; она утверждает, что понятия науки представляют собой условно принятые допущения...
возникновения новой цивилизации на Земле - гравитация
Но еще великий физик Жюль Анри Пуанкаре. предположил, что окружающее нас пространство не эфир
Интуиция. Механизм интуиции. Стресс. Интуитивные предчувствия.
математик Анри
Паункаре рассказывает о том, как после. длительных и тщетных усилий он совершил
величайшее из своих.
это ощущение имел в виду Пуанкаре, когда говорил, что.
Специальная теория относительности. Альберт Эйнштейн.
Осенью 1904 года Анри Пуанкаре также попытался «спасти» абсолютно неподвижный эфир
Фундаментальные и прикладные проблемы естествознания.
Приведем мнение о пользе науки крупнейшего математика, физика и философа Анри Пуанкаре (1854–1912):
РОЖДЕНИЕ ЛУНЫ И ЕЕ БУДУЩЕЕ. Луна некогда отделилась от...
знаменитых математиков всего мира — Анри Пуанкаре (1854— 1912), должна иметь именно грушевидную форму.