ГЕН — элементарная и структурная единица наследственности. ДНК РНК гены геномы

Вся электронная библиотека      Поиск по сайту

 

Медицинская энциклопедия

Раздел: Медицина 

 

ГЕН

 

Смотрите также:

 

Медицинская библиотека

Медицинская библиотека

 

Инфекционные болезни

 

Энциклопедия традиционной и нетрадиционной медицины

 

Биология

биология

Медицинский справочник

 

Судебная медицина

 

Физиология человека

физиология

 

Внутренние болезни

 

Уход за больными

болезни

 

Внутренние болезни

 

Болезни желудка и кишечника

 

Болезни кровообращения

медицина

 

Болезни нервной системы

 

Микро-биология

микробиология

 

Палео-патология – болезни древних людей

 

Общая биология

Общая биология

 

Лечебное питание

 

Лекарственные растения

 

История медицины. Сорокина

История медицины. Сорокина

 

Марчукова. Медицина в зеркале истории

 

Биографии врачей и биологов

 

Пособие по биологии

 

— элементарная и структурная единица наследственности. Первые умозрительные догадки о том, что передачу потомкам признаков родителей обеспечивает совокупность отдельных (дискретных) наследственных задатков, высказывали еще в древности Демокрит, Гиппократ и др. Однако строгое доказательство существования элементарных наследственных факторов было получено в 1865 г. чеш. естествоиспытателем И. Г. Менделем, четко сформулировавшим гипотезу о дискретных наследственных факторах, каждый из к-рых управляет развитием строго определенного наследственного признака и в своей активности не зависит от других наследственных факторов. Мендель подразделил гены на доминантные (не зависящие в своем проявлении от других генов) и рецессивные (подавляемые доминантными). С 1909 г. эти наследственные задатки по предложению дат. ученого У. Иогансена стали именовать генами. В 1910—1913гг. амер. биолог Т. Морган и его ученики доказали, что Г. линейно расположены в особых структурах клеточного ядра — хромосомах и что находящиеся в одной хромосоме Г. передаются потомкам совместно, образуя единую группу сцепления. Т. о., число групп сцепления у любого организма равно числу хромосом в его клетках. Была обнаружена также способность хромосом обмениваться друг с другом участками большей или меньшей длины. Перед созреванием половых клеток парные хромосомы сближаются, образуют единую структуру, и в этот момент может произойти их перекрест с последующим разрывом отдельных хромосом и направленным соединением концов в месте разрыва (так наз. кроссинговер), что и приводит к обмену участками между хромосомами. Было установлено, что при кроссинговере разрыв хромосом происходит в межгенных участках, так что отдельные Г. передаются целиком,  не дробясь.

После открытия в 1899 г. рус. ученым С. И. Коржинским и в 1900—1901 гг. голл. ученым Г. де Фризом процесса изменения отдельных Г. (мутаций) в естественных условиях, ав 1925—1928 гг.— возможности получения искусственных мутаций под действием радиации и хи-мич. веществ создались условия для изучения изменчивости отдельных Г. При этом было подтверждено, что отдельные Г. изменяются, мутируют как целое. Т. о., сложилось представление о Г. как элементарной единице наследственного материала, к-рая ведет себя как целое при мутировании и передается целиком при кроссинговере. Однако вскоре были получены данные, доказывающие   дробимость   Г.   как   в расположения нуклеотидов в Г. должна оставаться неизменной. В противном случае под контролем измененного Г. будет синтезироваться белок с нарушенной стр5гктурой и измененной функцией или даже синтез какого-либо белка окажется невозможным. При этом установлено, что изменение (перестановка или замена) даже одного нуклеотида в Г. может вести к резкому изменению свойств кодируемого им фермента, что в свою очередь может обусловить возникновение наследственного заболевания (см. Наследственные болезни). В 60-е гг. 20 в. благодаря успехам молекулярной генетики был полностью определен точный состав всех троек нуклеотидов (кодонов), кодирующих 20 основных аминокислот, а также выяснены   закономерности   функционирования Г. В результате этих исследований было доказано, что клетка обладает способностью размножать молекулы ДНК, несущие генетическую информацию. Это свойство было названо репликацией. При этом с участием нескольких групп специальных ферментов происходит точное копирование исходной ДНК. Реализацию информации, записанной в Г., представляют следующим образом (1). На Г. синтезируется его копня в виде молекулы рибонуклеиновой к-ты — так наз. информационная, или иРНК (см. Нуклеиновые кислоты). Этот процесс получил название транскрипции. иРНК соединяется со специальными клеточными образованиями — рибосомами, и при участии другой формы рибонуклеиновой   к-ты — так   наз.   транспортной (тРНК), связанной с аминокислотами, в рибосомах происходит синтез соответствующей данному Г. белковой молекулы (процесс трансляции). В конечном итоге оказывается, что последовательность аминокислот в белке, а значит, и его свойства целиком определяются последовательностью (порядком расположения) нуклеотидов в Г. Т. о., согласно современным представлениям. Г. — это участок молекулы дезоксирибонуклеиновой к-ты — ДНК (у нек-рых вирусов — рибонуклеиновой к-ты — РНК), к-рый определяет порядок расположения аминокислот в первичной структуре какого-либо из белков живой клетки и тем самым обусловливает формирование признаков организма.

 



В 1961 г. франц. ученые Ф. Жакоб и Ж. Моно обнаружили, что Г. функционально неоднородны, что существует две группы Г.: структурные, управляющие синтезом специфических белков (гл. обр. ферментов), и регуляторные, контролирующие деятельность структурных Г. Дальнейшими исследованиями был расшифрован сложный механизм регуляции активности структурных Г. и уточнены нек-рые детали процесса «считывания» генетической информации     (см.     Молекулярная    генетика).

Геном, плазмон, генотип и фенотип. Все организмы на Земле подразделяют на две группы по признаку структурной организации ядра в их клетках. Те многоклеточные и одноклеточные организмы, в клетках к-рых имеется ядро, окруженное специальной ядерной оболочкой, отгораживающей содержимое ядра от цитоплазмы, называют эукариотами (от лат. эу — собственно, карио — ядро). Одноклеточные микроорганизмы, не имеющие четко сформированного ядра, а вместо этого содержащие единственную молекулу ДНК, не связанную с белками, называют прокариотами. У эукарио-тов, включая человека, в каждой хромосоме содержится одна огромная по длине молекула ДНК, несущая, по-видимому, несколько тысяч генов. У прокариотов аналогом хромосомы является единственная в клетке молекула ДНК (к тому же не несущая на себе ядерных белков), в к-рой содержится несколько сотен генов, последовательно располагающихся по длине молекулы. Установлено, что, помимо генов, входящих в состав хромосом, и у эукариотов, и у прокариотов часть генов сосредоточена в более коротких молекулах ДНК, располагающихся в структурах органелл клеток (митохондрий, хлоропластов и др.) и в так наз. плазмидах (половые факторы бактерий, факторы устойчивости к антибиотикам и т. д.), расположенных в цитоплазме клеток. Эти нехромосомные гены называют также цито-плазматическими Г. Совокупность всех Г., входящих в состав хромосом каждой клетки эукариотов (или в единственную хромосому у прокариотов), без учета дитоплазматических генов, по предложению нем. биолога Г. Винклера (1920), принято называть геномом клетки. В свою очередь совокупность цитоплаз-матических Г. называют плазмоном (   2).

Всю наследственную информацию, присущую организму, включая и гены, сосредоточенные в хромосомах, и Г., находящиеся в цитоплазматических структурах, по предложению У. Ио-ганнсена (1909) называют генотипом клетки. Генотип содержит наследственную программу развития всех видовых ииндивидуальных признаков организма. Совокупность всех признаков организма (как внешних, так и внутренних) называют фенотипом. Клетки тела высших организмов и человека имеют двойной набор хромосом (они диплоидны) и, следовательно, содержат два генома. Ряд организмов (низшие растения, нек-рые насекомые) имеют и во взрослом состоянии только один геном (они гаплоидны). Нек-рые растительные организмы имеют в своих клетках по 3, 4 и более геномов, т. е. тройной, четверной и более набор хромосом (напр., пшеница, свекла и др.). Такие многоплоидные организмы нередко отличаются по своим внешним признакам, т. е. своему фенотипу. Нек-рые органы в теле человека также содержат в своих клетках по тройному набору хромосом. В половых клетках (гаметах) диплоидных организмов содержится один геном, т. к. в процессе их созревания парные хромосомы расходятся по разным клеткам. При оплодотворении (см. Размножение) происходит объединение геномов отцовских и материнских половых клеток. Как правило, геномы отцовских и материнских гамет гомологичны (соответственны), но в гибридных организмах такое соответствие отсутствует.

Обмен генами между организмами может происходить в результате различных биологич. процессов. Прежде всего он осуществляется во время формирования половых клеток, когда происходит так наз. кроссинговер. В клетках каждого организма содержится по паре каждой из хромосом: одна получена от отца, а другая от матери. Эти хромосомы получили название гомологичных хромосом. Подавляющее большинство генов в этих хромосомах одинаково, а отличия касаются лишь тех генов, к-рые содержат мутации (см. Мутагенез). Перед созреванием половых клеток во всех организмах происходит особое клеточное деление (мей-оз). На одной из его стадий гомологичные хромосомы вступают в тесный контакт друг с другом (это возможно, т. к. генный набор и последовательность Г. в этих хромосомах в основном схожи) и иногда обмениваются между собой участками большей или меньшей длины. Гораздо реже наблюдается кроссинговер в обычных (соматических) клетках тела. У микроорганизмов существует много других способов обмена генетич. информацией за счет ряда специальных процессов. Ученые прилагают большие усилия для того, чтобы добиться осуществления этих способов и у высших организмов (см. Инженерия генетическая). Делается это гл. обр. для выяснения природы процессов обмена генетической информацией, происходящих в живой природе, чтобы человек в будущем смог применить их на практике, вводя желаемые Г. в нужные организмы и, напротив, исключая из набора Г. данного организма ненужные или вредные Г., напр, вызывающие заболевания. Конечно, эти целенаправленные манипуляции, несмотря на их исключительную важность как для целей здравоохранения, так и для ряда других отраслей деятельности человека (сельского хозяйства, охраны природы и др.), станут возможными только в будущем, но исследование процессов обмена Г., происходящих в естественных условиях, во-первых, доказывает принципиальную возможность того, что эти процессы действительно осуществляются в природе, а во-вторых, позволяют выяснить механизм и детали различных способов обмена Г. Во всяком случае установлено, что процессы обмена Г. имеют важное эволюционное значение, т. к. они позволяют образоваться новым сочетаниям нормальных и измененных Г. Новые комбинации нередко оказываются более жизнеспособными и благоприятными для естественного отбора. В результате отбираются лучшие формы растений, животных и микроорганизмов. Т. о., обмен Г. является важным способом получения измененных форм и играет существенную роль в эволюции (см.  Эволюционное учение).

Изучение обмена Г. исключительно важно и для понимания причин многих заболеваний. В процессе обмена Г. может исказиться первоначальная генетич. информация и начаться развитие болезненного процесса. Сказанное в полной мере приложимо и к человеку. Так, напр., установлено, что почти каждый человек несет наследственные задатки измененных признаков. Эти задатки (измененные Г.) могут располагаться в различных хромосомах, но в результате обмена Г. между разными хромосомами, входящими в пару, может возникнуть такая комбинация, при к-рой в одной хромосоме окажется сразу несколько «больных» Г., и это приведет к резкому отягощению наследственными дефектами данной особи. С другой стороны, в результате разрыва хромосом на уровне определенных Г. может быть нарушена правильность генетич. информации, закодированной в данных Г., что также может привести к возникновению наследственной болезни. Как это предотвратить, пока неясно, но вполне очевидно, что без детального изучения как различных способов обмена Г., так и их точного молекулярного механизма, невозможно подойти к управлению этими важнейшими процессами наследственной изменчивости. Известно четыре основных способа обмена Г.: кроссинговер, конъюгация, трансдукция  и  трансформация.

Кроссинговер — наиболее распространенный процесс, обеспечивающий обмен Г. у высших организмов. Буквальный перевод этого слова — перекрест, и, действительно, во время формирования половых клеток, когда удвоенные гомологичные хромосомы попарно сливаются, образуя единую структуру, состоящую из четырех хромосомных нитей, иногда происходит перекрест нитей, заканчивающийся их разрывом и соединением образовавшихся концов в новом порядке. В результате происходит перераспределение (рекомбинация) Г. у хромосом. Участки хромосом, содержащие один или несколько Г., обмениваются с участками   другой   хромосомы   (  3).

Еще в начале 20 в. удалось под микроскопом наблюдать характерную фигуру перекрещенных хромосом (названную хиазмой), затем удалось доказать наличие кроссинговера генетически — по результату перекомбинации признаков у скрещиваемых организмов. Следя   за   новыми   сочетаниями   Г.   у потомков тех организмов, у к-рых произошел кроссинговер, Т. Морган обнаружил важнейшее правило, ставшее основой для создания генетич. карт. Он доказал, что разрыв и воссоединение в новом порядке каких-либо Г. осуществляются тем легче, чем дальше друг от друга в хромосомах они располагаются. Вероятность возникновения разрыва в хромосоме между Г. уменьшается пропорционально уменьшению расстояния   между   ними    (   4).

В дальнейшем были обнаружены отклонения от простых закономерностей кроссинговера и было показано, что частота этого процесса не всегда зависит только от линейного расстояния между Г. Так, напр., если на участке между двумя Г. происходит сразу двойной или множественный обмен, то частота перекомбинации этих Г. уменьшается. С другой стороны, при изучении кроссинговера между близко лежащими Г. было выявлено резкое увеличение частоты этого процесса, непропорциональное расстоянию между этими Г. (так наз. отрицательная интерференция).

В большинстве случаев кроссинговер происходит между участками парных хромосом. При этом, как правило, участки, к-рыми обмениваются хромосомы, оказываются одинаковой длины. Но иногда разрывы хромосом, вступающих в кроссннговер, происходят не в строго идентичных точках, и тогда наступает неразный кроссинговер. При этом одна из хромосом, участвующих в кроссинговере, получает дополнительный генетич. материал. Происходит то, что было названо генетиками дупликацией (удвоением) генетич. материала. Есть обоснованные предположения, что процесс неравного обмена Г. имел особенно большое значение на nep=i!:c этапах развития жизни на   Земле.

Выяснение правила зависимости частоты перекреста ме;:сду Г. от расстояния между ними помогло разработать простой способ определения порядка расположения Г. в хромосомах и определения относительного расстояния между ними. Для этого используют метод так наз. трехфакторного, или трехген-ного, скрещивания (5). Произвольно выбирают три каких-либо гена, про к-рые известно, что они расположены в одной хромосоме, и сначала определяют частоту перекреста для первого и второго из этих генов, затем для второго и третьего генов, и, наконец, проводят последнее определение — выясняют частоту перекреста между первым и   третьим   генами.

Полученные в результате этих трех определений цифры однозначно определяют как порядок расположения данных генов, так и относительное расстояние между ними. Приняв любой произвольный масштаб, можно разместить эти гены на отрезке прямой линии, называемой генетической картой. Добавив к любым двум уже изученным генам следующий Г., пока еще не локализованный на генетической карте, можно определить расстояние до него (в избранном масштабе), затем до следующего гена и т. д. В результате перебора новых комбинаций генов молено составить все более детальные генетические карты. Такие карты имеются уже для многих организмов.

На основе изучения родословных в отдельных семьях (см. Генеалогия) удается создавать генетические карты и для многих генов, обусловливающих наследственные заболевания у человека. Эти сведения имеют большое теоретическое и практическое значение, так как позволяют с уверенностью судить о возможности и предполагаемой частоте возникновения у потомков родителей, несущих какие-либо гены, сразу двух или более заболеваний, обусловленных генетически.

После доказательства того, что в основе каждой хромосомы лежит нить молекулы ДНК, соединяющейся специфическим образом с особыми ядерными белками, стало ясно, что молекулярная природа кроссинговера должна быть изучена прежде всего на базе изменений молекул ДНК. Было обнаружено, что начало кроссинговеру дают разрывы одиночных нитей ДНК, позволяющие освободиться участкам этих нитей в разных хромосомах, соединяющихся затем в новом порядке друг с другом. Молекулярный механизм кроссинговера активно исследуется, обнаружено несколько ферментов, участвующих в осуществлении   этого   процесса.

Конъюгация. У бактерий обмен Г. осуществляется в результате процесса конъюгации, при к-ром две клетки бактерий (мужская и женская) соединяются друг с другом тонким — так    наз.    цитоплазматическим   мостиком. По этому мостику из мужской клетки в женскую передается участок молекулы ДНК, к-рый затем внедряется (рекомбинирует) в молекулу ДНК женской клетки. Внедрившийся ге-нетич. материал изменяет наследственные свойства бактерий, что играет важнейшую роль для их эволюции. Нужно отметить, что путем конъюгации могут быть переданы любые Г., в т. ч. и дефектные, что может повлечь за собой их распространение в популяции микроорганизмов.

Трансдукция. Другим способом обмена Г. у микроорганизмов служит трансдукция их с помощью вирусов (бактериофагов). В 1952 г. амер. ученые Д. Ледерберг и Н. Зиндер обнаружили, что нек-рые бактериофаги способны захватывать участки ДНК бактериальных клеток, в к-рых они размножились^   а   затем   переносить   в другие клетки. Захваченный вирусом и переданный фрагмент ДНК может нести  несколько  Г.

Обнаружено несколько типов транс-дукции. При неспецпфической транс-дукции в белковую оболочку вирусных частиц попадает в основном ДНК бактерий, и такие частицы почти не несут собственной ДНК. Однако в силу того, что способность присоединяться к клеткам бактерий определяется белками оболочки вируса, они сохраняют свойство адсорбции на клетках бактерий и после прикрепления к ним вводят внутрь бактерий захваченные ранее отрезки молекул ДНК. Т. к. собственной ДНК этих вирусов недостаточно для того, чтобы обеспечить размножение новых вирусных частиц, дальнейшего развития вирусной инфекции не происходит, а в бактериальных клетках оказываются участки ДНК, привнесенные от других бактериальных клеток. Они могут внедриться внутрь ДНК, обеспечивая этим обмен Г. между различными бактериями. При неспецифической трансдукции вирусы могут захватывать участки из практически любого отрезка ДНК бактерий и тем самым обеспечить обмен любыми Г.   бактерий.

Отличным от описанного вида трансдукции является специфическая или ограниченная трансдукция. В этом случае ДНК вируса присоединяется к строго ограниченным участкам ДНК бактерий. При выходе вирусной ДНК из состава бактериальной первая захватывает с собой соседствующие с ней Г. бактерий и переносит их в другие бактериальные клетки. Например, бактериофаги X и ср 80 присоединяются вблизи Г., определяющих усвоение клетками молочного сахара (лактозы), и могут захватывать эти Г. при своем размножении.   Амер.   ученым  С.   Меррилу, М. Гейеру и Дж. Петриччиани в 1961 г. удалось с помощью бактериофагов захватить эти Г. и перенести их не в бактериальные клетки, а в клетки, взятые от больного, страдающего одной из наследственных болезней углеводного обмена, к-рая проявлялась нарушением усвоения лактозы. После добавления к культуре клеток человека бактериофагов, несущих недостающие гены, у части клеток восстановился нормальный синтез ферментов, управляющих усвоением лактозы. Аналогичные опыты были проведены австрал. учеными С. Доем и П. Грессгофом в 1973 г. с клетками растений, не способными расти на среде с лактозой, но приобретшими эту возможность после контакта с бактериофагами, принесшими с собой нужные гены от бактериальных клеток.

Эксперименты обеих групп исследователей интересны не только тем, что они продемонстрировали принципиальную возможность осуществления трансдукции в клетках высших организмов — человека и растений, но и тем, что указали на биохимич. общность реакций в клетках бактерий, животных и растений и возможность лечения наследственных недугов с помощью чужеродной генетич. информации, выделенной из клеток    различного    происхождения.

Трансформация. Обмен Г. удается осуществить и более простым способом: выделив ДНК из одних клеток бактерий и добавив ее к другим клеткам, отличающимся по своим генетич. признакам. Этот процесс был назван трансформацией. Первоначально процесс трансформации был обнаружен у пневмококков, сенной палочки и бактерий рода гемофилис, затем этот список был расширен. Трансформация была описана и на модели клеток высших организмов. Первые опыты подобного рода были выполнены в 1962 г. с клетками человека, а в начале 70-х гг. с клетками растений (эксперименты белы., нем. и сов. ученых). Изучение процессов обмена генетич. информацией находится в центре внимания генетиков и биохимиков. Их исследования стали частью нового направления экспериментальной генетики, ставящего своей задачей найти пути направленного изменения наследственности гл. обр. с целью устранения различных наследственных недугов   (см.   Инженерия   генетическая).

Выделение индивидуальных генов и искусственный синтез гена. В 1969 г. группа ученых выделила из ДНК кишечной палочки в чистом виде структурную часть одного из Г., определила его размеры и сфотографировала в электронном микроскопе. Подобные исследования, проведенные еще на нескольких объектах, показали, что в принципе возможно развить методы выделения индивидуальных Г., к-рые можно будет в будущем использовать для устранения наследственных недугов. Не менее важной для этих целей может стать разработка способов искусственного синтеза Г.

Проводятся также исследования по искусственному размножению отдельных молекул ДНК, несущих сразу много Г. Первый успех в этом направлении был достигнут группой биохимиков, сумевших в отсутствие клеток размножить выделенную в чистом виде молекулу ДНК одного из бактериофагов, а затем доказать жизнеспособность этих искусственных копий молекул ДНК. С помощью таких молекул ДНК, введенных в клетки бактерий, удалось вызвать образование инфекционных вирусных частиц. Позднее был обнаружен фермент, способный вести синтез ДНК на молекулах РНК. Сама идея, что РНК может послужить шаблоном для синтеза ДНК, была высказана в 1961 г. сов. генетиком С. М-Гершензоном. После выделения этого фермента сразу в трех лабораториях в 1972 г. удалось с его помощью синтезировать в бесклеточной системе структурные части Г., кодирующих белки гемоглобина животных и человека. Искусственно синтезированные Г. также могут в дальнейшем быть использованы в экспериментах по генетич. инженерии.

Взаимодействие генов и влияние окружающей среды на их активность. Согласно первоначальным взглядам генетиков каждый отдельный Г. управляет определенным индивидуальным признаком, проявление Г. не зависит ни от внешних воздействий, ни от того, в каком месте хромосомы он находится. Для И. Г. Менделя вопрос о «соседях» того или иного Г. в хромосоме вообще был лишен смысла, т. к. ему не было ничего известно о расположении и свойствах Г. Однако уже в 1913 г. было развито представление о множественном (плейотропном) действии Г., о том, что один Г. может оказывать влияние в ряде случаев сразу на несколько признаков. Это представление было доказано в последующих исследованиях, а природа эффекта плейотропии выяснена методами биохимической генетики. Было установлено, что изменение активности или отсутствие какого-либо фермента может приводить к нарушению синтеза химич. соединений, участвующих, в нескольких последующих реакциях. Именно свойство плейотропии лежит в основе множественности нарушений при наследственных болезнях человека, вызываемых дефектом какого-либо одного Г. Одновременно было показано, что многие признаки формируются при участии продуктов нескольких Г., совместное и строго координированное действие к-рых обусловливает их развитие (так наз. полимерные Г.; признаки, формируемые под их контролем, называют количественными признаками). Была обнаружена зависимость проявления отдельного Г. от того, в соседство с каким из Г. он попадает в результате обмена Г. Впервые положение о зависимости проявления Г. от их перестановки в хромосомах и связанной с этим переменой в их феноти-пич. проявлении было высказано сов. генетиком С. С. Четвериковым в 1926 г., определившим его как «генотипи-ческую среду», оказывающую влияние на активность Г. Это положение также получило полное подтверждение в современной генетике.

Т. о., современная генетика доказала наличие Г. у всех живых организмов и установила, что все без исключения морфологические признаки организмов, физиологические и биохимические реакции в них развиваются и протекают под контролем Г. Молекулярные механизмы работы Г. были детально изучены, и во многих случаях прослежено развитие определенных признаков в зависимости от работы конкретных генов. После раскрытия принципов зашифровки наследственной информации (см. Генетический код) и полной его расшифровки стало возможным начать исследования по выделению индивидуальных Г. и по их искусственному синтезу. Удалось также изучить различные механизмы обмена Г. между клетками одного и того же организма и между разными организмами, что важно для эволюции (см. Эволюционное учение); был детально исследован механизм реализации генетической программы при развитии организмов. Была доказана сложная природа этого процесса и установлено, что на него влияют различные факторы, в т. ч. факторы окружающей среды и среди них многие лекарственные препараты (антибиотики, гормоны, сульфаниламиды и т. д.), искажающие Г. или мешающие их работе. Т. о., выяснение молекулярных механизмов действия Г., с одной стороны, и влияния на эти процессы различных лекарственных препаратов — с другой, дает единственно правильный путь для разработки эффективных методов лечения многих болезней и является важнейшим фактором, обусловливающим недопустимость самолечения

 

ОГЛАВЛЕНИЕ КНИГИ: "Большая медицинская энциклопедия"

 

 Смотрите также:

 

"Справочник фельдшера"

"Лекарственные препараты"

Твоё здоровье (Знание)

Домашний доктор

Семейная энциклопедия

Здоровая семья

Бенджамин Спок "Разговор с матерью"

Вирусы гриппа и грипп

Энциклопедия народного целительства

Домашний лечебник

Лечебник

Энциклопедия самолечения. Лечимся дома природными средствами