Книги по строительству |
Железобетонные конструкции |
|
Напряженное состояние железобетонных элементов, возникающее вследствие воздействия изгиба с кручением, представляет одно из наиболее сложных явлений в железобетоне. Оно недостаточно изучено. У специалистов еще нет единого мнения относительно его сущности, поэтому в нормах ряда стран предложены методы расчета прочности таких элементов, существенно отличающиеся между собой. Рассмотрим метод, разработанный в НИИЖБ на основе многолетних экспериментальных исследований, включенный в отечественные нормы. Несущая способность элемента оценивается по методу предельного равновесия с учетом образования пространственной трещины в предположении, что предельное сопротивление арматуры, пересеченной трещиной, лимитируется пределом текучести, а бетона сжатой зоны — его прочностью при сжатии. Разрушение элемента по схеме, приведенной на VI.6, происходит в случае совместного действия изгиба и кручения с преобладающим влиянием изгибающего момента, при нулевом (или малом) значении поперечной силы. В этом случае воздействия при расчете прочности элемента следует исходить из предположения, что в состоянии текучести находится продольная и поперечная арматура, расположенная у трех граней элемента, с соответствующей ориентировкой пространственной разрушающей трещины и положения сжатой зоны. Схема по VI.7, а относится к случаю действия крутящего момента и поперечной силы при нулевых или малых значениях изгибающего момента. Для этой схемы характерно раскрытие наклонных трещин на одной из боковых граней элемента вследствие текучести хомутов. Опытами установлено, что кручение существенно снижает сопротивление элемента поперечной силе в сравнении с сопротивлением при изгибе без кручения. Схема по VI.7, б относится к случаю, когда преобладает действие крутящего момента, а значение изгибающего момента в сравнении с ним мало и когда в сжатой от изгиба грани предусмотрено значительно меньше арматуры, чем у противоположной грани. Согласно СНиП, расчет должен производиться по трем расчетным схемам в зависимости от расположения сжатой зоны пространственного сечения: 1-я схема: сжатая зона пространственного сечения располагается у грани элемента, сжатой от изгиба (см. VI.6); 2-я схема: сжатая зона —у грани элемента, параллельной плоскости изгиба (см. VI.7, а); 3-я схема: сжатая зона — у грани элемента, растянутой от изгиба. Прочность элемента предлагается проверять по всем трем схемам из условия, чтобы крутящий момент от действия внешней нагрузки, вычисленный относительно оси, проходящей в плоскости сжатой зоны через ее центр, не превышал суммы моментов предельных усилий в продольной и поперечной арматуре, пересеченной пространственной трещиной, взятых относительно той же оси. За расчетное значение принимается меньшее из трех. Такое ограничение по соотношению поперечной и продольной арматуры в элементе введено для обеспечения эксплуатационных требований по деформативности элементов н ширине раскрытия трещин в бетоне, поскольку для элементов, подвергающихся Изгибу с кручением, расчет предельных состояний по второй группе не разработан и нормами не предусматривается. |
«Железобетонные конструкции» Следующая страница >>>
Смотрите также:
Как приготовить бетон и строительные растворы
Быстротвердеющий портландцемент
Особобыстротвердеющий портландцемент
Портландцемент с умеренной экзотермией
Сульфатостойкий портландцемент
Ускорители и замедлители твердения
ГЛАВА 3. Свойства заполнителей
Общая классификация заполнителей
Природные заполнители для бетона
Сцепление заполнителя с цементным камнем
Прочие механические свойства заполнителя
Пористость и водопоглощение заполнителя
Глинистые, илистые и пылевидные частицы в заполнителе
Слабые и выветрелые зерна заполнителя
Равномерность изменения объема заполнителя
Реакция щелочей цемента с заполнителями бетона
Термические свойства заполнителя
Требования к зерновому составу заполнителя
Рациональные зерновые составы заполнителей
Зерновой состав мелкого и крупного заполнителей
Особо крупные и особо мелкие зерна заполнителя
«Прерывистый» зерновой состав заполнителя
Наибольшая крупность заполнителя
Определение удобоукладываемости бетона
Факторы, влияющие на удобоукладываемость
Определение коэффициента уплотнения
Влияние времени и температуры на удобоукладываемость
Бетонная смесь для подачи бетононасосом
Раздельная укладка бетонной смеси методом «Прелакт»
Прочность бетона при растяжении
Трещинообразование и разрушение при сжатии
Влияние крупного заполнителя на прочность бетона
Влияние жирности смеси на прочность бетона
Влияние возраста на прочность бетона
Самозалечивание трещин в бетоне
Прочность бетона при сжатии и прочность при растяжении
Сцепление между бетоном и арматурой
Влияние температуры на прочность бетона
Пропаривание при атмосферном давлении
Пропаривание при повышенном давлении
ГЛАВА 6. Упругость, усадка и ползучесть бетона
Факторы влияющие на усадку бетона
Влияние ухода и условия твердения бетона
Дифференциальная усадка бетона
Усадка за счет карбонизации бетона
Факторы влияющие на ползучесть бетона
Химические воздействия на бетон
Испытание бетона на сульфатостойкость
Действие морской воды на бетон
Действие мороза на свежеуложенный бетон
Действие мороза на затвердевший бетон
Испытания бетона на морозостойкость
Бетон с воздухововлекающими добавками
Коэффициент термического расширения бетона
ГЛАВА 8. Испытание затвердевшего бетона
Влияние условий испытаний образцов
Разрушение образцов при сжатии
Влияние отношения высоты к диаметру на прочность бетона
Сравнение прочности бетонных кубов и цилиндров
Размеры образца и размеры заполнителя
ГЛАВА 9. Легкие и особотяжелые бетоны