Курс лекций |
История экономических учений Раздел: Экономика |
Естественно, из этого не следует, что с помощью максимизации нельзя исследовать широкую область динамических процессов. Так, например, рассмотрим динамический алгоритм нахождения вершины горы, который реализуется с помощью "градиентного метода". Его идея заключается в том, что ваша скорость в каком-либо направлении пропорциональна наклону горы в том же самом направлении. Нельзя рассчитывать, что такой метод приведет вас на высочайшую вершину Альп из любой начальной точки, находящейся в Европе. Однако он сходится к точке максимума любой вогнутой поверхности из тех, что фигурируют в школьных учебниках.
Подобно световым лучам в физике, о которых я говорил ранее, оптимальные траектории роста в теориях, выросших из новаторской работы Фрэнка Рамсея, появившейся более сорока лет тому назад (Ramsey, 1928), сами по себе демонстрируют богатство динамических явлений. Такая динамика совсем не похожа, скажем, на ту, которая составила предмет позитивистского анализа связи акселератора с мультипликатором. Может быть, вы помните, что сэр Уильям Гамильтон затратил много лет, пытаясь обобщить понятие комплексного числа на случай более чем двух измерений. Рассказывают, что его семья с сочувствием относилась к его исследованиям кватерниона, и каждый вечер дети приветствовали его по возвращении из астрономической обсерватории вопросом: "Папа, ты умеешь перемножать свои кватернионы?" лишь для того, чтобы получить грустный ответ: "Я умею складывать мои кватернионы, но я не умею их перемножать". Если бы в 30-е годы Ллойд Метцлер и я имели детей, они каждый вечер спрашивали бы нас: "Все ли ваши характеристические корни вели себя хорошо и были устойчивы?" Ибо в те дни, находясь под впечатлением затянувшейся Американской Депрессии и ее нечувствительности к эфемерным государственным дотациям, мы были в какой-то мере во власти догмы устойчивости.
Совершенно иными были мои главные интересы в течение 50-х годов, когда я занимался бесплодными поисками доказательства так называемой "теоремы о магистрали" (Samuelson 1949a, 1960а, 1968b, Samuelson and Solow, 1956; Dorfman, Samuelson and Solow, 1958). Здесь речь тоже идет о модели максимизации, по крайней мере в смысле межвременной эффективности. Когда вы изучаете модель "затраты-выпуск" фон Неймана, вы сталкиваетесь с задачей нахождения минимакса, или седловой точки, подобной той, которая рассматривается в его же теории игр. Это исключает возможность того, что ваши динамические характеристические корни будут демпфироваться. Так что если бы мои дети не относились к моей научной работе с тем чувством, которое можно назвать "снисходительным пренебрежением", то в 50-х годах они должны были бы спрашивать меня "Папа, образуют твои характеристические корни взаимно обратные или противоположные по знаку пары, соответствующие движению по цепной линии вокруг магистральной седловой точки?"
Могу ли я попросить вас о снисхождении? Позвольте мне отклониться от темы и рассказать один анекдот. Я делаю это с некоторым смущением, потому что, когда меня приглашали прочитать лекцию, профессор Лундберг предупредил, что это должна быть серьезная лекция. Хотя и говорят, что я был нахальным молодым человеком, у меня было только одно столкновение с великим Джоном фон Нейманом, который, конечно, был гигантом современной математики и, кроме того, проявил свою гениальность в работе над водородной бомбой, теорией игр и основами квантовой механики. Ради того, чтобы дать представление о его величии, я готов даже с еще большим бесстыдством бросить вызов профессору Лундбергу и рассказать вам анекдот в анекдоте. Кто-то однажды спросил великого йельского математика Какутани: "Вы великий математик?" Какутани скромно ответил: "О, вовсе нет. Я — рядовой трудяга, искатель истины" — "Ну, если вы не великий математик, то кого бы вы назвали таковым?" — спросили его. Какутани думал, думал, а затем, как гласит предание, наконец сказал "Джонни фон Неймана".
И вот с этим Голиафом у меня произошло столкновение. Как-то, а это было в 1945 г., фон Нейман читал лекцию в Гарварде о своей модели общего равновесия. Он заявил, что в ней используется новый математический аппарат, не связанный с традиционным математическим аппаратом физики и теорией экстремумов. Я подал голос из задних рядов, сказав, что это вовсе не отличается от понятия границы издержек упущенной выгоды, используемого в экономической теории, когда при фиксированных количествах всех ресурсов и всех, кроме одного, продуктов общество стремится максимизировать объем выпуска остающегося продукта. Фон Нейман отреагировал на это с быстротой молнии, что было для него характерным: "Вы можете держать пари на одну сигару?" К стыду своему, должен сказать, что в этот раз маленький Давид, поджав хвост, бежал с поля боя. И все же когда-нибудь, когда я войду в ворота Святого Петра, я думаю, что половина сигары мне достанется, но только половина, потому что точка зрения фон Неймана также была обоснованной.
Беглый просмотр современных журналов и учебников показывает, что, в то время как студент, изучающий классическую механику, часто сталкивается со случаями колебаний около положения равновесия (например, маятника), студент-экономист чаще имеет дело с движениями по цепной линии около седловой точки: подобно тому как канат, подвешенный на двух гвоздях, принимает форму цепной линии, выпуклой в сторону земли, так и экономические движения совершаются вдоль цепной линии, выпуклой в сторону магистрали. Я хотел бы здесь напомнить о происхождении слова "магистраль" (Turnpike). Все американцы привыкли к тому, что если нужно попасть из Бостона в Лос-Анджелес, то лучше всего побыстрее доехать до главной магистрали и только в конце путешествия нужно свернуть с нее к пункту назначения. Так же и в экономике для того чтобы обеспечить наиболее эффективное развитие страны, при определенных обстоятельствах следует как можно быстрее вступить на путь максимального и сбалансированного роста, так сказать, "оседлать" эту магистраль, а затем, по окончании, например, 20-летнего периода, свернуть к конечной цели развития. Здесь мы сталкиваемся с интересным эффектом: когда горизонт становится широким, вы проводите большую часть своего времени в пределах малого расстояния от магистрали. Все, больше я не буду произносить это слово, на котором можно сломать язык.
К содержанию книги: История экономических учений
Смотрите также:
История экономический учений в вопросах и ответах
методическое пособие для студентов дистанционной формы обучения ...
Политэкономия (история экономических учений,
экономическая теория, мировая экономика) / Под ред. Д. В. Валового. М., 1999.
Учебник по основам экономической ... |
Булгаков С.Н. Очерки по истории экономических
учений. - М-: издание автора, 1918. С. 232. 33. Булгаков С.Н.
Православие. - Париж: 1991. С. 248. ... |
Литература по общей теории государства и права пока еще не ...
Его творческое наследие оставило заметный след в
науке об обществе, в истории экономических учений»2. Ни одна теория не
может претендовать на ... |
В гуманитарных науках, исследующих социокультурные основания ...
Отметим также размежевание истории
экономической культуры с понятием экономической мысли и историей экономических
учений. Развитие экономической мысли как ... |
Экономическая наука. Экономический человек: рациональность ...
В основе большинства экономических учений
лежат представления о мотивах и характеристиках ... История
показывает, что подобная деятельность стала достаточно ... |
История и культура. КУРС ИСТОРИИ И КУЛЬТУРОЛОГИИ
История
объективна, но ее истоки кроются в субъективной жизни человека и ... тогда
как культурология длительное время развивалась в недрах философских учений.
.... В-третьих, большинство гуманитарных и социально-экономических
наук в той ... |
Последние добавления:
История политических и правовых учений
История отечественного государства и права История государства и права зарубежных стран