Условно-категорические и разделительно-категорические дедуктивные умозаключения. Условно-категорическое умозаключение имеет два правильных модуса. Отрицающий и утверждающий модус

  Вся электронная библиотека >>>

 Логика и аргументация

 

 

 

Логика и аргументация

Учебное пособие для вузов


Раздел: Учебники



 

Условно-категорические и разделительно-категорические дедуктивные умозаключения

 

К несиллогистическим дедуктивным рассуждениям, которые изучались в традиционной логике и до сих пор часто используются на практике, относятся некоторые особые формы выводов. Большей частью они представляют собой комбинацию таких посылок, в которых категорические суждения объединяются с условными или с разделительными. Логически необходимый характер заключения в таких рассуждениях обеспечивается тем, что другие возможности вывода исключаются благодаря категорическому суждению.

Обратимся сначала к условно-категорическим умозаключениям, в которых одна посылка является условным суждением, а другая – простым категорическим суждением. Очевидно, что посылки такого рассуждения должны быть логически связанными друг с другом. Эта связь выражается в том, что термины, которые встречаются в категорическом суждении, должны также фигурировать либо в основании, либо в следствии условного суждения.

Условно-категорическое умозаключение имеет два правильных модуса. Первый из них называют утверждающим модусом (modus ponens).

Рассмотрим такой пример.

Если ток пропустить через проводник, то он нагревается.

Ток пропущен через проводник.__________________

Следовательно, проводник нагревается.

Здесь вторая посылка, являющаяся категорическим суждением, подтверждает или обосновывает истинность основания условного суждения, а заключение утверждает истинность следствия. Условное суждение обычно начинается со слов "если", "поскольку", "так как", "потому что", которые предваряют его основание. Следствие же начинается словами "то", "поскольку" и т.п. С утверждающим модусом мы уже встречались при изучении суждений, но там речь шла о выводах из суждений, не расчлененных на субъект и предикат.

Утверждающий модус обычно используется для доказательства, когда удается обосновать истинность основания условного суждения, а тем самым доказать и истинность следствия.

Отрицающий модус (modus tollens) строится по аналогичной схеме, но в нем категорическое суждение во второй посылке отрицает следствие в условном суждении первой посылки. Рассмотрим пример:

Если ток пропустить через проводник, то он нагреется.

Проводник не нагрелся.______________________

Следовательно, ток не был пропущен.

Этот модус служит для опровержения основания условного суждения, когда удается установить ложность его следствия.

Схематически утверждающий модус может быть представлен в следующем виде:

         Если А, то В

                                                  А                                   

                                     Следовательно, В.

Отрицающий модус представляется в такой форме:

  Если А, то В

_     ____не-В________

                           Следовательно, не-А.

Наряду с условной связью в математике и других точных науках широко используется эквивалентная связь между суждениями. Так, в теореме:

"Если в треугольнике углы равны, то и стороны его равны" умозаключение строится не по правилу утверждающего модуса, поскольку в данном случае используется дополнительная информация об эквивалентной связи между основанием и следствием.

Очень часто рассмотренные выше модусы употребляются не в развернутой, а в сокращенной форме, например: "Раз ток проходит через проводник, то он нагревается", поскольку при этом предполагается, что "ток действительно проходит через проводник".

                                                                                                                                                                          

К содержанию:  Логика и аргументация: пособие для вузов

 

Смотрите также:

 

Логика

 

Логика. Принципы логики. Законы формальной логики.

Логика. включает принципы определения, классификации, правильного. употребления терминов, предикации, доказательств и рассуждений.

 

Логика и научный метод. Систематизация методов построения теорий...

формальной логики к решению повседневных проблем, с которыми я. сталкиваюсь и как человек, и как ученый? Если подумать, меня. большему научила практика, а не логика.

 

Формальная и полуинтуитивная логика. Абстрактные критерии. Проблемы...

служит нам основным ориентиром в лабораторной практике. Та полуинтуитивная логика, которой пользуется каждый.

 

...и книги Милля. Основания политической экономии. Система логики....

позитивизма, последователь Огюста Конта. В "Системе логики" (т 1-2,1843) разработал.сменялась логикой, логика математикой, математика языками.

 

...Чарлза Пирса. Основатель семиотики. Американский философ, логик...

Американский философ, логик, математик, естествоиспытатель Родоначальник. прагматизма Выдвинул принцип, согласно которому содержание понятия целиком.

 

Основные логические законы в русском языке. Логические законы.

Поэтому говорят не просто о законах логики, а о законах и правилах логики (см. об этом: Свинцов В.И. Логика.

 

Общий характер философии Аристотеля и сравнение ее с философией...

Этим он оказал величайшую услугу -знанию. Указав философии новую цель, Аристотель дал ей и средства для достижения этой дели, которое заключаются в его логике.

 

Интуиция - что это такое

Довольно часто эти два способа конфронтируют между собой. Логика отвергает интуицию, интуиция задавливает логику.

 

...аспекты философского анализа. Аналитическая философия и логика....

На начальном этапе эти взаимоотношения были максимально тесными (упомянем хотя бы позицию раннего Рассела, считавшего логику "сущностью философии").

 

...Биография и сочинения Гегеля. Феноменология духа, Наука логики...

натурфилософии, имеющей содержанием отчуждение Бога из своего творения к самому. себе в человеческом духе В конце снова оказывается логика - на этот раз.

 

Последние добавления:

 

 Педагогика

Деловая психология

Политология

Политология Западная и Восточная традиции