Микроэлементы и жизнеобеспечение организма |
Металлы, которые всегда с тобой Е.Д. Терлецкий |
|
Что делается В механике, И в химии, И в биологии,— Об этом знают лишь избранники, Но, в общем, пользуются многие: Излечиваются хворости, Впустую сила мышц не тратится... Л. Мартынов
Злой и добрый дух кобальт
Средневековые саксонские рудокопы своими заклятыми врагами считали зловредных гномов—кобольдов, живших глубоко под землей. Это именно из-за их колдовских проделок подчас не удавалось из найденной серебряной руды получить драгоценный металл. Более того, часто при плавке такой руды выделялись ядовитые газы, которые отравляли металлургов. Считалось, что именно так маленькие уродцы мстят людям, осмелившимся вторгнуться в их подземные кладовые. От этих злых духов не спасали даже молитвы... (рис. 10). Со временем рудознатцы все же научились отличать истинную серебряную руду от «нечистой». Шведский химик Георг Брандт, выделивший из такой «нечистой» руды в 1735 году неизвестный металл, похожий на сталь с синеватым отливом, назвал его кобальтом. Под этим именем сегодня и известен химический элемент № 27. Надо сказать, что некая таинственность всегда присутствовала вокруг кобальта и его соединений, с которыми человечество познакомилось ни много ни мало 5 тыс. лет назад. И в Древнем Египте, и в Китае соли кобальта применялись для окраски стекла и глазури в красивый синий цвет. В гробнице Тутанхамона, знаменитого египетского фараона, нашли осколки синего кобальтового стекла... Кому не известно, что когда-то только в Венеции умели изготавливать цветное стекло, которое высоко ценилось в других странах. Дабы сохранить секрет варки такого стекла, все стекольные фабрики Венецианской республики были переведены на остров Мурано. Однако в XVI веке в Германии и Чехии нашли рецепт изготовления синей краски для стекла и стали ее продавать в разные концы света и даже в Венецию. В то же время знаменитый химик и врач Парацельс любил демонстрировать картину, созданную им самим. На ней был изображен зимний пейзаж с деревьями под снежным покровом. Во время показа Парацельс незаметно подогревал картину, и на глазах изумленных зрителей снег быстро сходил, на земле зеленела трава, а деревья покрывались листьями. Чудеса объяснялись довольно просто: картина была написана кобальтовыми красками. Смесь хлористого кобальта с хлористым же никелем почти бесцветна. При ее нагревании теряется содержащаяся в этих солях кристаллизационная влага, и цвет сразу же меняется. Но настоящая тайна кобальта, разгаданная лишь в наше время, была связана со страшной болезнью — злокачественным малокровием. Заболевшие считались приговоренными к смерти. Врачи так и называли это заболевание — пернициозная анемия, от латинского слова «гибельный». Впервые анемию такого рода описал английский врач Томас Аддисон в 1855 году. У больных, страдавших злокачественной анемией, резко снижалось выделение желудочного сока и появлялся совершенно необычный процесс образования эритроцитов, какой наблюдался разве что только у внутриутробного пятимесячного плода. Долгое время эти два явления медики не могли связать. Лишь в 20-е годы нашего столетия стараниями американских врачей, изучавших влияние различных компонентов пищи на кроветворение, кое-что прояснилось. Им удалось установить, что наиболее благотворно действуют на образование красных кровяных шариков витамины группы В, которыми богата печень. Больным, употреблявшим печень, особенно сырую, удавалось задерживать развитие смертельной болезни. В последующие годы, наконец, нашли связь между недостатком желудочной секреции и патологической выработкой аномальных эритроцитов. Оказалось, что в желудочном соке человека присутствует особое вещество — гастромукопротеин, являющийся переносчиком одного из витаминов В, который, вероятнее всего, и ответствен за выработку нормальных кровяных шариков. Когда возникает болезнь, резко уменьшается количество гастромуко-протеина, что сразу же сказывается на переносе витаминов и ведет к нарушению кроветворения. В 1948 году одновременно и независимо друг от друга две исследовательские лаборатории Англии и США выделили из говяжьей печени красные кристаллы активного вещества. Поначалу оно получило название антипернициозного фактора. Это было очень важным достижением, особенно если учесть, что новое соединение содержалось в исходном продукте в пропорции 1 : 100 000. Представьте, сколько печенок надо было переработать, чтобы получить ничтожное количество «фактора». И это в условиях, когда отсутствовали какие-либо надежные критерии, которые помогли бы отделить основной продукт от примесей. Но потребовались еще годы и годы, чтобы исследовать до конца этот «фактор печени». К середине 50-х годов из Оксфордского университета поступили, наконец, сведения, что там расшифровали структуру антипернициозного фактора, который теперь получил название витамин В12. Самое необычное в этом веществе было то, что оно содержало атом кобальта. Это единственный витамин, в состав которого входит металл. Расшифровка строения такого сложного соединения, как витамин В12, была произведена благодаря рентгено-структурному анализу (не правда ли, здесь приходит на память история с гемоглобином?). Но интересно, что и по строению своей основной части это соединение похоже на гем (да и на хлорофилл тоже): атом кобальта встроен в систему кольца коррина, только незначительно отличающегося по строению от порфирина (на рис. 11 показана часть молекулы). Витамин В12 имеет молекулярную массу 1357, а кобальт в этой молекуле находится в трехвалентном состоянии. В связи с тем что здесь имеется цианогруппа, этот витамин называют еще и цианкоболамин. Цианогруппа может вытесняться другими атомами или группами атомов, поэтому возможно существование большого числа производных витамина В12. Однако эти так называемые гомологи в нашем организме уже не производят почти никакого эффекта, за что они получили название «псевдовитаминов». Уже первые рентгенограммы кристаллического вещества В12, полученные еще в конце 40-х годов/вскоре после его открытия, весьма оптимистично настраивали исследователей относительно выяснения его структуры. Однако в то время еще не было полной определенности по части химического состава этого витамина. Потребовалось решать проблему с двух сторон: кристаллографам с помощью рентгеноструктурного анализа, химикам-органикам при помощи традиционных методов. Это было плодотворное сотрудничество, может быть, где-то и не без здорового спортивного азарта. Рентгеноструктурщикам первым удалось определить долгожданную структуру, и в этом труднейшем марафоне первостепенная заслуга принадлежала Дороти Кроуфут-Ходжкин, одной из самых замечательных биохимиков нашего времени. В 194:6 году она установила структуру пенициллина. Кроуфут-Ходжкин с детства увлекалась химией. После окончания химического факультета Оксфордского университета она стала одним из первых сотрудников только что созданной кристаллографической лаборатории в Кембридже. Там под руководством выдающегося английского ученого Дж. Бернала она постигала тайны рентгеноструктурного анализа белковых веществ. Особых успехов исследователи добились при изучении глобулярных белков. Кроуфут-Ходжкин называли лучшим кристаллографом Англии. К ней за советом и консультацией обращались молодые Уотсон и Крик, когда у них не все ладилось с расшифровкой структуры ДНК. 8 лет понадобилось Дороти, чтобы разгадать структуру витамина В12. Многим эта задача казалась совершенно неразрешимой. ; За титаническую работу Дороти Кроуфут-Ходжкин в 1964 году была удостоена Нобелевской премии. Таким образом; она; стала третьей женщиной химиком после Марии и Ирэн Кюри, которой удалось получить эту высшую научную награду. Воистину, нет предела совершенству! Как бы принимая эстафету от Кроуфут-Ходжкин, а может быть напротив, бросая ей вызов, «король синтеза» Вудворт по ту сторону океана решается на искусственное получение витамина В12. 11 лет — с 1961 по 1972 год - «лепил» он неподатливую молекулу. Синтез витамина В,2 считается высшим достижением за всю историю органической химии. Жаль, что Нобелевскую премию не дают дважды за успехи в одной и той же области науки. Но по части научных поощрений Вудворт, пожалуй, обижен меньше всех. Вряд ли мы ограничились бы одной страницей, если бы стали перечислять почетные степени и награды, академии и научные общества, членом которых он состоит. Этот выдающийся ученый создал научную школу, насчитывающую не менее 300 учеников — не только в Америке, но и в Европе. Половина из них — сами уже маститые ученые, члены различных академий. В работе над синтезом витамина В12 принимало участие 8 известных швейцарских химиков и 17 исследователей из Англии. Вудворт неоднократно бывал в нашей стране и, для того чтобы читать в подлиннике советскую периодику, выучил русский язык. По словам его друга, профессора МГУ А. Н. Коста, «часто на лекциях или докладах, взяв в обе руки по кусочку мела, он с легкостью иллюзиониста начинал с обоих концов рисовать химическую структуру, и его пространственное видение молекулы было столь тонко, что не было случая, когда линии на доске не сошлись». Получив витамин В12, человечество открыло путь к избавлению от злокачественного малокровия. Видный советский терапевт академик АМН И. А. Кассирский назвал победу над этим страшным недугом «медицинским событием века». Однако лечение пернициозной анемии весьма сложно, и при этом не ограничиваются витамином В12, а используют и другие препараты. Витамин В12 применяют не только при расстройстве кроветворения, но и при заболеваниях нервной системы, печени, для лечения астмы и ряда других недугов. Однако в лечебной практике пока не используют синтетический витамин то он еще слишком дорог. В фармацевтической промышленности цианкоболамин получают используя биосинтез бактерий. Вообще заметим что у животных витамин Bi2 образуется только благодаря деятельности, микроорганизмов пищевого тракта. У: человека: этот процесс .выражен очень слабо» и , основное количество витамина мы должны получать с пищей На страницах этой книги уже упоминалось о том что учеными ведутся поиски . заменителей железа в организме. В. этом отношении особенно обнадеживают комплексы кобальта с различными лигандами. Простейшие переносчики молекулярного кислорода с атомами кобальта вместо: железа оказались более эффективными. Но тогда возникает вопрос: почему же природа выбрала именно железо? На это имеется по крайней мере два вероятных ответа.; Во-первых, железо более распространено в природе, а, следовательно, и более доступно. Кларк кобальта в земной коре лишь 0,0018, то есть круглым счетом в 2600 раз меньше, чем кларк железа. Во-вторых, железо в организме, помимо переноса кислорода, выполняет и многие другие разнообразные функции. Оно более универсально. И все же... Имеются убедительные сведения о том, что комплексы кобальта в лабораторных моделях вполне конкурируют с некоторыми энзимами. Недаром, помимо всего прочего, кобальт является активатором для таких ферментов, как, например, карбоангидраза и карбоксипептидаза. В нашем организме кобальта содержится всего лишь 1,5 мг. Однако попробуйте обойтись без них. |
«Микроэлементы и жизнеобеспечение организма» Следующая страница >>>
Смотрите также: Альманах Эврика 84 Альманах Эврика 90 Тайны двадцатого века Знак Вопроса (Знание) Чудеса и Приключения