Водоснабжение и канализация |
Насосы. Насосные станции |
|
Наличие развитых кавитационных явлений в тех или иных элементах проточной части насоса приводит к кавитационному разрушению поверхности его деталей. Интенсивность кавитационной эрозии зависит от формы кавитации, степени ее развития и продолжительности работы насоса в кавитационном режиме. Наличие взвешенных наносов в воде, перекачиваемой насосом, вызывает абразивное разрушение его рабочих органов. Интенсивность этого вида разрушения определяется концентрацией наносов, их гранулометрическим и минералогическим составом, формой частиц, длительностью воздействия взвесенесущего потока на детали насоса и материалом, из которого эти детали изготовлены. При одновременном воздействии кавитации и наносов общий износ насосов, как правило, увеличивается. Технико-экономические послед-, ствия износа насосов вследствие кавитации и истирания взвешенными наносами проявляются двояко. Во-первых, это ухудшение энергетических характеристик насосов (снижение напора и КПД) и связанное с этим увеличение потребляемой электроэнергии. Если при этом принять во внимание, что стоимость электроэнергии для насосных станций достигает 90 % общих эксплуатационных расходов, то становится понятным, что поддержание высокого КПД оборудования имеет решающее значение для экономичности работы насосных станций. Во-вторых, это значительные затраты труда и материалов на ремонтные работы по устранению последствий износа деталей проточной части насосов. Общие дополнительные затраты средств получаются столь большими, что приобретают самостоятельное технико-экономическое значение. Ряд экспериментальных исследований и опыт эксплуатации насосов различных типов позволяет с определенной степенью точности установить наиболее характерные элементы проточной части насосов, подверженные кавитационной эрозии, абразивному разрушению и совместному ка-витационно-абразивному износу. Рабочим органом центробежных насосов, подверженным наиболее сильному износу, является лопастное колесо. Турбулентное перемешивание потока, вызываемое конструктивными особенностями колеса, а также содержание в воде нерастворениого воздуха и газов являются причинами возникновения и развития кавитации при давлениях в потоке, превышающих давление паров воды при данной температуре.
Развитые кавитационные явления приводят к эрозионным разрушениям элементов колес. Интенсивность этих разрушений резко возрастает при содержании в воде взвешенных наносов. Отводы центробежных насосов подвержены лишь абразивному износу, при этом максимальная интенсивность износа наблюдается в зоне так называемого расчетного сечения (в местах сопряжения спиральной части и напорного патрубка). Особую группу составляют детали, изнашивающиеся в результате движения взвесенесущей воды из напорной полости в область с меньшим давлением, уплотнения, сальниковые устройства, подшипники и т. д. Характерные места износа рабочих органов осевых насосов. Наиболее сильному разрушению подвержены внутренние поверхности камер рабочих колес. Вследствие отрыва потока, вызванного несоответствием угла набегания потока и угла установки лопаток, возможно усиленное разрушение лопаток выправляющего аппарата. Интенсивность износа элементов проточной части насосов вследствие кавитационно-абразивного износа оборудования в большинстве случаев является сложной задачей, для обоснованного решения которой в начальный период эксплуатации насосной станции на основе анализа конкретных условий должны быть проведены следующие мероприятия: найдены режимы работы насосов, удовлетворяющие максимальной экономичности работы станции в целом и исключающие вообще или ослабляющие интенсивность кавитационно-абразивного разрушения деталей; выявлены режимы работы, при которых наиболее возможно кави-тационно-абразивное разрушение оборудования; определена экономически оправданная продолжительность межремонтного периода эксплуатации с учетом изменения энергетических характеристик оборудования вследствие износа и стоимости капитально-восстановительного ремонта. Поскольку интенсивность кавита-ционного и абразивного разрушения, как это установлено многочисленными исследованиями, находится в прямой степенной зависимости от скорости потока, то экономичность и надежность работы насосных станций во многом зависят от выбора режимов эксплуатации их оборудования. В имеющихся в настоящее время инструктивных материалах (ГОСТах, СНиП и различных ведомственных указаниях) отсутствуют рекомендации по выбору режимов работы насосов с учетом содержания в воде абразивных частиц. Большой практический интерес в этой связи представляют результаты выполненных в МИСИ им. В. В. Куйбышева экспериментальных исследований гидроабразивного износа деталей насосов различных типов, позволившие установить связь между интенсивностью износа и режимом работы насоса. В качестве примера показано изменение интенсивности абразивного износа рабочего колеса центробежного насоса К90/55 в зависимости от его подачи. Знание механизма кавитационно-абразивного разрушения в сочетании с анализом характера и особенностей движения потока через рабочие органы позволяет в отдельных случаях повысить износостойкость и продлить межремонтный период эксплуатации насосов за счет изменений в конструкции их проточной части. Многочисленные научно-исследовательские работы, проведенные в лабораториях и натурных условиях, а также обширный опыт отечественного и зарубежного гидромашиностроения указывают на возможность существенного повышения износостойкости насосов путем изготовления их деталей из материалов, способных противостоять кавитации и абразивному воздействию ианосов. В силу своей экономичности наибольшее распространение в насосостроеини получили чугун и углеродистые нелегироваиные стали. Однако их износостойкость невелика. В условиях кавитационной эрозии хорошо зарекомендовали себя алюминиевая и марганцевая бронза. Благодаря этому, а также вследствие своей высокой аитикоррозионности они находят довольно широкое применение при изготовлении деталей центробежных насосов, особенно рабочих колес. Однако из-за относительно низких прочностных показателей из бронзы изготовляют только детали небольших размеров. Детали крупных центробежных и осевых насосов, работающих в условиях кавитации, изготовляют из железоуглеродистых сплавов. При слабой интенсивности кавитацион-ного воздействия применяют низколегированные стали 20ГСЛ; при средней интенсивности кавитациоииой эрозии хорошо зарекомендовали себя нержавеющая сталь 20X1ЗНЛ и стали мартенситиого класса 1X13 и 2X13. В жестких кавитациоиных условиях высокую сопротивляемость эрозии показала нестабильная хромомарганцевая аустенитная сталь 30Г10Х10, самоупрочняющаяся при пластических деформациях. Наблюдения, проведенные в условиях гидроабразивиого изнашивания, показывают, что легированные стали обладают большей сопротивляемостью к воздействию взвешенных наносов, чем углеродистые. В этом отношении они являются предпочтительными, как и при выборе материала для деталей, подверженных кавитационной эрозии. Весьма незначительна абразивная износостойкость бронзы, что, несомненно, объясняется эе сравнительно невысокой твердостью. Абразивная износостойкость чугуна, по данным ВНИИГндромаша, может изменяться в широких пределах в зависимости от его химического состава и способа обработки. Если износостойкость серого чугуна сравнительно невелика, то сплавы белого мартен-ситНого чугуна и термически обработанный высокохромистый чугун по своей сопротивляемости абразивному износу лучше углеродистых сталей. Сложность состава, высокая стоимость высоколегированных сталей и цветных сплавов делают нерациональным их применение в массивных деталях, работающих в условиях кавитационно-абразивного воздействия. Поэтому используют обычный чугун, литую бронзу и толстолистовую сталь, которые имеют низкую ка-витационно-абразивную стойкость. При изготовлении деталей насосов из этих материалов довольно широко применяют метод покрытия их рабочих поверхностей более стойкими к кавитационно-абразивному износу материалами — нержавеющими сталями и алюминиевой бронзой, а также сплавами, наносимыми на поверхность основного металла электродной наплавкой. Все большее распространение получают такие материалы, как нейлон, резина и пластмассы. Поверхность изнашиваемой детали защищается покрытием из этих материалов, периодически восстанавливаемым по мере износа с применением новейшей технологии — плазменной наплавки износостойких материалов. Основной материал детали при этом не изнашивается. Результаты многочисленных лабораторных и натурных испытаний показывают, что за счет применения защитных полимерных покрытий срок службы деталей проточной части насосов может быть увеличен на 25—30 %. |
К содержанию книги: Водоснабжение и канализация – насосы, насосные станции
Смотрите также:
Насосы. Насос устройство для перемещения жидкостей
НАСОСЫ. Насос с электродвигателем. Центробежные насосы ...
|
ТЕПЛОВЫЕ НАСОСЫ. Обслуживание ремонт тепловых насосов. Отопление и ...
|
ТИПЫ НАСОСНЫХ СТАНЦИЙ, насосные станции шахтного типа
Насосы центробежные производственного назначения и насосные станции
|
НАСОСНЫЕ СТАНЦИИ. Шнековые насосы, центробежные насосы
Трубопроводы. напорные железобетонные асбестоцементные чугунные ...
Трубопроводы. Медные трубы. Трубы из синтетических материалов ...
НАПОРНЫЕ ТРУБОПРОВОДЫ ВОДОВОДЫ. Диаметр напорных трубопроводов
|
Стеклянные трубопроводы. Оборудование и технология монтажа ...
|
Пластмассовые трубопроводы из ПВП, ПНП, ПП и ПВХ. Монтаж систем ...
|
КОНСТРУИРОВАНИЕ КАНАЛИЗАЦИОННОЙ СЕТИ. Канализационные трубопроводы ...
|
Трубопроводы для отопительных систем. Медные стальные полимерные ...
|
Трубопроводы. Условные проходы. Условные, рабочие и пробные давления
|
Водосборы Инженерное оборудование. Водоснабжение Канализация Справочник сантехника