Особенности лазерного излучения и разновидности лазеров. Лазер. Нелинейная оптика. Лазер самый мощный источник света. Свойства лазерного излучения. Газовые лазеры. Лазеры на красителях

  

Вся электронная библиотека >>>

 Естествознание >>>

 

 

Концепции современного естествознания


Раздел: Учебники

 

Особенности лазерного излучения и разновидности лазеров

 

Лазер – это слово появилось сравнительно недавно. Вначале оно было известно только узкому кругу специалистов-физиков. Популярность его постепенно росла. А в последнее время очень многие не просто слышали о лазере, но и знают о его больших реализованных и потенциальных возможностях. В то же время чаще всего у неспециалистов лазер вряд ли вызывает положительные эмоции. Лазер? Ничего интересного: трубка в корпусе, иногда даже непривлекательном, из которой выходит тоненький луч – зеленый, синий, чаще красный. Есть ли о чем здесь говорить? Оказывается, есть. И специалистам, и всем, кто далек от понимания физических явлений, связанных с лазером. Для специалистов, в первую очередь физиков, лазер дал жизнь весьма перспективному научному направлению – нелинейной оптике, охватывающей исследования распространения мощных световых пучков в твердых телах, жидкостях и газах и их взаимодействия с веществом. Лазеры породили новые технологии с уникальными возможностями. Для многих лазер – источник необыкновенного света, который может вылечить надвигающуюся слепоту и на лету поразить движущуюся цель, мгновенно просверлить отверстие в самой твердой детали, сделанной, например, из алмаза и т. д.

В чем же необыкновенные свойства лазерного излучения, лазерного луча? Во-первых, лазерный луч распространяется, почти не расширяясь. Напомним: для того чтобы луч прожектора не расходился, используют большое вогнутое зеркало и систему линз, собирающие свет от источника в пучок. Это помогает, но мало: уже на расстоянии около километра от прожектора луч становится раза в два шире. Лазеру же собирающие зеркала и линзы чаще всего не нужны. Он и без них сам по себе излучает почти параллельный пучок света. Слово «почти» означает, что пучок лазерного света не совсем параллельный: существует угол расхождения, но он сравнительно мал – около 10-5 рад, и тем не менее, на больших расстояниях он ощутим: на Луне такой пучок, испущенный с Земли, даст пятно диаметром примерно 3 км.

Во-вторых, свет лазера обладает исключительной монохроматичностью, т. е. он имеет только одну длину волны, один цвет. В отличие от обычных источников света, атомы которых излучают свет независимо друг от друга, в лазерах атомы излучают свет согласованно. Преломляясь в призме, луч белого света превращается в яркую радугу-спектр, а одноцветный, монохроматичный свет проходит через нее не разлагаясь. Линза тоже преломляет лучи, собирая их в фокусе. Но белый свет она фокусирует в радужное пятнышко, а лазерный луч – в крошечную точку, диаметр которой может составлять сотые и даже тысячные доли миллиметра. Благодаря такому свойству лазерного луча стала возможной оптическая запись информации с высокой плотностью – крохотные оптические диски вмещают громадное количество информации – сотни мегабайт.

В-третьих, лазер – самый мощный источник света. В узком интервале спектра кратковременно (10-11 с) достигается мощность излучения 1012–1013 Вт с одного квадратного сантиметра, в то время как мощность излучения Солнца с той же площади равна только 7. 103  Вт, причем суммарно по всему спектру. На узкий интервал, равный ширине спектральной линии лазерного излучения, приходится у Солнца всего лишь 0,2 Вт/см2. Напряженность электрического поля в электромагнитной волне, излучаемой лазером, составляет 1010–1012 В/см; она превышает напряженность поля внутри атома.

Названные удивительные свойства лазерного излучения придали свету новое лицо. Еще на заре развития лазерной техники французский физик Луи де Бройль сказал: «Лазеру уготовано большое будущее. Трудно предугадать, где и как он будет применяться, но я думаю, что лазер – это целая техническая эпоха».

В 1960 г. Т. Мейманом (США) был создан первый лазер – рубиновый, работающий в импульсном режиме. В нем не вся энергия света лампы накачки преобразуется в лазерную вспышку. Большая ее часть уходит на бесполезный и даже просто вредный нагрев стержня и зеркального кожуха. Мощные импульсные лазеры охлаждают потоком воздуха, воды, а иногда и жидким азотом. Частота генерации импульсных лазеров может достигать более 10 млн вспышек в секунду. Излучение таких лазеров воспринимается как непрерывное. Вспышка импульсного лазера имеет огромную мощность – тысячи ватт. Мощность эту можно повысить, увеличив размеры активного лазерного элемента. А можно позади этого элемента поставить еще один лазерный стержень с лампой-вспышкой, т. е. еще один лазер, но без зеркал. Импульс света первого лазера заставит срабатывать второй. Оба световых импульса, сложившись, удваивают мощность вспышки. Но размеры стержня нельзя увеличивать беспредельно: чем больше стержень, тем больше потери света в нем. Поэтому стержни даже из лучших материалов нет смысла делать длиннее 50–60 см. Излучение, сфокусированное в крошечное пятно, можно применять для многих целей, о некоторых из них рассказано ниже. Но все-таки это короткий световой импульс. Конечно, им можно пробить отверстие, сварить две металлические проволоки и сделать много других полезных дел. Но для многих задач гораздо удобнее было бы иметь непрерывное лазерное излучение, скажем, для сварки или резки. Существует и такое излучение, его дают газовые лазеры. Газовый лазер был создан почти одновременно с рубиновым, в том же 1960 г. Он работал на смеси гелия и неона. Современные газовые лазеры работают на многих газах и парах. Все они дают непрерывное излучение в очень широком диапазоне длин волн: от ультрафиолетового до инфракрасного света.

Однако на этих достижениях ученые не остановились. Был создан газодинамический лазер, похожий на реактивный двигатель. В его камере сгорания сжигается угарный газ (окись углерода) с добавкой топлива (керосина, бензина, спирта). Получившаяся при этом смесь газов состоит из углекислого газа, азота и паров воды. Молекулы газа возбуждены и готовы к работе: температура в камере сгорания доходит до тысячи с лишним градусов, а давление – до 20 атм. Раскаленные газы из камеры сгорания вытекают через расширяющееся реактивное сопло, иногда называемое соплом Лаваля. В нем газ разгоняется до сверхзвуковой скорости, охлаждаясь почти до нуля! Проносясь между зеркалами, молекулы газа излучают энергию в виде световых квантов, рождая лазерный луч мощностью 150–200 кВт. И это мощность не отдельной вспышки, а постоянного, устойчивого луча, сияющего, пока у лазера не кончится горючее.

Но не только газовые лазеры дают непрерывное излучение. Его дает и полупроводниковый лазер, который вдохнул жизнь в оптическую запись. О ее возможностях рассказано выше, о ней имеют представление многие пользователи персональных компьютеров, державшие в руках лазерный диск, который привлекателен не только своим внешним видом, но и своей информационной емкостью: на диске диаметром 12 см можно записать сотни тысяч страниц текста.

Среди полупроводниковых лазеров лучшим по праву считается лазер на основе арсенида галлия – соединения редкого элемента галлия с мышьяком. Его излучение не отличается большой мощностью. В последнее время проводятся интенсивные работы, направленные на создание полупроводникового лазера, способного генерировать непрерывное излучение большой мощности.

Лазеры могут функционировать как на твердых телах, так и на газах. А можно ли построить лазер на жидкости? Оказалось, можно. Жидкости объединяют в себе достоинства и твердых и газообразных лазерных материалов; плотность их всего в несколько раз ниже плотности твердых тел (а не в сотни тысяч раз, как плотность газов). Значит, жидкостный лазер легко сделать таким же мощным, как лазер твердотельный. Оптическая однородность жидкостей не уступает однородности газов, а значит, позволяет использовать большие ее объемы. К тому же жидкость можно прокачивать через рабочий объем, непрерывно поддерживая ее низкую температуру и высокую активность ее атомов.

Наиболее широкое распространение получили лазеры на красителях. Называются они так потому, что их рабочая жидкость – раствор анилиновых красителей в воде, спирте, кислоте и других растворителях. Жидкостные лампы могут излучать импульсы света различной длины волны – от ультрафиолетового до инфракрасного света – и мощностью от сотен киловатт до нескольких мегаватт в зависимости от вида красителя. В последнее время разрабатываются химические лазеры, в которых атомы переходят в возбужденное состояние при действии энергии накачки химических реакций.

 

 

СОДЕРЖАНИЕ:  Концепции современного естествознания

 

Смотрите также:

  

Естествознание. НОВЕЙШАЯ РЕВОЛЮЦИЯ В ЕСТЕСТВОЗНАНИИ

Этим естествознание наступившей новой исторической эпохи существенно отличалось от естествознания.

 

Общие условия развития естествознания

В своем труде «Материализм и эмпириокритицизм», опубликованном в 1909 г., Ленин ответил на кардинальные философские, вопросы, возникшие в ходе развития естествознания.

 

естествознание. НОВЕЙШАЯ РЕВОЛЮЦИЯ В ЕСТЕСТВОЗНАНИИ...

Общие условия развития естествознания. Борьба передовых и реакционных идей в естествознании.

 

СТАНОВЛЕНИЕ МЕДИЦИНЫ. Внедрение естествознания в медицину

естествознания в области медицины ... В тесной связи со всеми медицинскими предметами она не только принесла свет к постели больного и всяческие благодеяния...

 

...вокруг света (1831—1836) и его значение в истории естествознания

областях естествознания, что проф. Генсло, рекомендуя его в 1831 г. в качестве натуралиста на «Бигль», руководился далеко не одной лишь своей интуицией.

 

ВНУТРЕННЯЯ МЕДИЦИНА терапия. Клиническая медицина

Все это вело к серьезному отставанию клинической медицины того времени от развивающегося естествознания. ВНУТРЕННЯЯ МЕДИЦИНА (терапия).

 

...и науки Бэкон выступил как провозвестник опытного естествознания...

...с одной стороны, о качественно простых природах, а с другой, - о чём-то более близком будущим объяснительным моделям механистического естествознания.

 

Медицина В ЗАПАДНОЙ ЕВРОПЕ В ПЕРИОД ПОЗДНЕГО СРЕДНЕВЕКОВЬЯ...

В эпоху Возрождения основными чертами естествознания стали: утверждение опытного метода в науке, развитие математики и механики, метафизическое мышление...

 

Революция в естествознании, идущая на протяжении всего XX...

И таким образом в научном мире сложился странный парадокс: представители естествознания, изучающие заведомо более простые объекты, давно открыли сложность, многомерность...

 

НИКОЛАЙ КУЗАНСКИЙ. Биография и трактаты Николая Кузанского....

космологии Коперника и опытного естествознания. Николай Кузанский родился в селении Куза в Южной Германии в 1401 году Отец.

 

Последние добавления:

 

Валеология. Вайнер  Валеология   География мирового хозяйства  Языковедение   

Туристская деятельность   Сборник задач по банковскому делу     Логика и аргументация