Эффективность производства и потребления энергии. Производство электрической энергии. Повышение энергетического КПД процессов и аппаратов. Проблема энергосбережения

  

Вся электронная библиотека >>>

 Естествознание >>>

 

 

Концепции современного естествознания


Раздел: Учебники

 

9.3. Эффективность производства и потребления энергии

 

Долгое время невысокая эффективность преобразования тепловой энергии в полезную работу связывалась с несовершенством самого механизма преобразования. С развитием термодинамики стало ясно, что существует ограничение полного преобразования всей тепловой энергии в полезную работу. Такое ограничение следует из фундаментальных законов термодинамики и обусловливается необратимостью тепловых процессов. К настоящему времени значительная часть всевозможных усовершенствований, направленных на повышение эффективности производства электроэнергии с использованием пара, в основном уже осуществлена. Если КПД первых паровых машин составлял 2–5%, то КПД современных энергетических систем – тепловых элетростанций, работающих на том или ином виде топлива и вырабатывающих пар для последующего преобразования его энергии посредством турбогенератора в электрическую, – достигает около 40%. Атомные электростанции также вырабатывают пар, подаваемый в турбогенераторы. КПД их не превышает 32%, а это означает, что только 32% тепловой энергии, выделяющейся при делении урана, преобразуется в электрическую.

Производство электрической энергии даже с применением современных энергетических систем сопровождается большими потерями тепла. Особенно велики потери тепла, когда электрическая энергия снова преобразуется в тепло либо другие виды энергии на месте потребления. Существенными потерями сопровождается и передача электроэнергии, особенно на большие расстояния. В последние десятилетия интенсивно ведутся работы по синтезу электропроводящих материалов проводников для передачи электроэнергии с минимальными потерями. Уже синтезированы высокотемпературные сверхпроводящие материалы. Однако для передачи электроэнергии нужны такие проводники, сверхпроводящее свойство которых проявлялось бы не при низких, а при обычных температурах.

К большим потерям приводит и потребление электроэнергии в химической промышленности. Например, энергетический КПД для процесса синтеза аммиака составляет 25–42%, хотя потребление энергии для такого процесса за последние 50–60 лет уменьшилось более чем на 50%. Для обычных способов получения винилхлорида он равен 12%, а для его синтеза из NO – всего лишь 5–6,5%. В большинстве случаев высокотемпературные процессы сопровождаются потерями энергии до 60–70%. Потери энергии в химическом производстве обусловливаются вполне объяснимыми объективными факторами, связанными с уровнем развития не только химических технологий, но и естествознания в целом. Однако есть и субъективные причины. Одна из них – очень часто разрабатываются методы превращения веществ с высоким процентом выхода конечной продукции без учета энергетической эффективности технологических процессов. В данной связи многие технологические процессы имеют сравнительно высокий процент выхода конечной продукции, но низкий энергетический КПД.

Повышение энергетического КПД процессов и аппаратов – одна из важнейших задач совершенствования химической технологии. Возможны разные способы ее решения – улучшение условий химических реакций, уменьшение числа стадий технологического процесса, осуществление реакций при невысоких, т. е. обычных температурах и давлениях, приближение химических процессов к биологическим и, наконец, разработка новых технологических приемов.

Проблема энергосбережения охватывает не только химические процессы, но и весь технологический цикл производства конечного продукта, включающий весьма важные стадии – добычу и первичную переработку природного сырья.

Новые методы, модифицированные установки и аппараты, новейшие технологии позволяют постепенно решать проблему энергосбережения. Конечно, на всех действующих предприятиях всеми возможными мерами необходимо сокращать бесполезное рассеяние энергии. Такие меры известны: это оптимизация производственных процессов, утилизация рассеянного тепла, улучшение изоляции и герметичности, оптимизация процессов испарения и конденсации и т. д. Сохранение энергетических ресурсов – неотъемлемая и значимая задача всех отраслей материального производства.

 

 

СОДЕРЖАНИЕ:  Концепции современного естествознания

 

Смотрите также:

  

Естествознание. НОВЕЙШАЯ РЕВОЛЮЦИЯ В ЕСТЕСТВОЗНАНИИ

Этим естествознание наступившей новой исторической эпохи существенно отличалось от естествознания.

 

Общие условия развития естествознания

В своем труде «Материализм и эмпириокритицизм», опубликованном в 1909 г., Ленин ответил на кардинальные философские, вопросы, возникшие в ходе развития естествознания.

 

естествознание. НОВЕЙШАЯ РЕВОЛЮЦИЯ В ЕСТЕСТВОЗНАНИИ...

Общие условия развития естествознания. Борьба передовых и реакционных идей в естествознании.

 

СТАНОВЛЕНИЕ МЕДИЦИНЫ. Внедрение естествознания в медицину

естествознания в области медицины ... В тесной связи со всеми медицинскими предметами она не только принесла свет к постели больного и всяческие благодеяния...

 

...вокруг света (1831—1836) и его значение в истории естествознания

областях естествознания, что проф. Генсло, рекомендуя его в 1831 г. в качестве натуралиста на «Бигль», руководился далеко не одной лишь своей интуицией.

 

ВНУТРЕННЯЯ МЕДИЦИНА терапия. Клиническая медицина

Все это вело к серьезному отставанию клинической медицины того времени от развивающегося естествознания. ВНУТРЕННЯЯ МЕДИЦИНА (терапия).

 

...и науки Бэкон выступил как провозвестник опытного естествознания...

...с одной стороны, о качественно простых природах, а с другой, - о чём-то более близком будущим объяснительным моделям механистического естествознания.

 

Медицина В ЗАПАДНОЙ ЕВРОПЕ В ПЕРИОД ПОЗДНЕГО СРЕДНЕВЕКОВЬЯ...

В эпоху Возрождения основными чертами естествознания стали: утверждение опытного метода в науке, развитие математики и механики, метафизическое мышление...

 

Революция в естествознании, идущая на протяжении всего XX...

И таким образом в научном мире сложился странный парадокс: представители естествознания, изучающие заведомо более простые объекты, давно открыли сложность, многомерность...

 

НИКОЛАЙ КУЗАНСКИЙ. Биография и трактаты Николая Кузанского....

космологии Коперника и опытного естествознания. Николай Кузанский родился в селении Куза в Южной Германии в 1401 году Отец.

 

Последние добавления:

 

Валеология. Вайнер  Валеология   География мирового хозяйства  Языковедение   

Туристская деятельность   Сборник задач по банковскому делу     Логика и аргументация