СОВРЕМЕННОЕ ЕСТЕСТВОЗНАНИЕ |
|
В 50-х годах XX в. по мере изучения природы проводимости полупроводников создавались полупроводниковые материалы для электронных устройств. Вначале такими материалами служили преимущественно монокристаллы кремния и германия (см. рис. 6.18) с содержанием в них относительно небольшой концентрации примесей. Полупроводниковыми свойствами, как выяснилось позже, обладают и бинарные соединения, например, соединения галлия и мышьяка, антимонид индия. Из антимонида индия до сих пор изготавливаются высокочувствительные полупроводниковые детекторы для ближней инфракрасной области.
Через некоторое время в центре внимания разработчиков оказались монокристаллы арсенида галлия, выращенные на подложках из монокристаллического фосфида индия. Современная технология позволяет получить несколько слоев арсенида галлия различной толщины с различным содержанием примесей. Из арсенид-галлиевых материалов изготавливают рабочие узлы лазеров и лазерных дисплейных устройств, применяемых в длинноволновых оптических линиях связи. В процессе разработки новых полупроводниковых материалов были неожиданно открыты полупроводниковые свойства аморфного (некристаллического!) кремния. К настоящему времени открыты совершенно новые группы материалов, обладающих электрической проводимостью. Физические свойства их в значительной степени зависят от локальной структуры и молекулярных связей. Некоторые из таких материалов относятся к неорганическим, другие – к органическим соединениям. Изучение органических материалов с электропроводящими свойствами началось в конце 60-х, когда были синтезированы проводящие органические кристаллы. Такие проводники были получены в реакциях соединений тетратиафульвалена и тетрационохинодиметана. Молекулы данных соединений имеют плоскую структуру, и в смешанном кристалле они располагаются последовательно, образуя столбы. В результате взаимодействия смежных молекул формируются комплексы с переносом заряда. Такое взаимодействие возможно при наличии донора – молекулы, легко отдающей электроны, и акцептора – молекулы, принимающей их. Роль донора выполняет молекула тетратиафульвалена, а роль акцептора – молекула тетрацианохинодиметана. При переносе заряда между молекулами возникает электрический ток вдоль проводящего столбика. Механизм переноса заряда в проводящих столбиках обнаружен и в других материалах – полимерных проводниках. В таких проводниках большие плоские молекулы служат элементами проводящего столбика и образую металломакроциклы, соединяющиеся друг с другом посредством ковалентно связанных атомов кислорода. Такая химическая сконструированная молекула обладает электрической проводимостью, и это – настоящая сенсация. Атомы металла и окружающие его в плоском макроцикле группы можно заменить и модифицировать различными способами. В результате можно получить полимер с заданными электропроводящими свойствами. В углеродном скелете одного из простейших органических полимеров двойные связи чередуются с одинарными. Такая связь называется сопряженной. Она обусловливает подвижность электрических зарядов вдоль углеродной цепи. Данные полимеры с присадками брома, йода и пентафторида мышьяка приобретают металлический блеск и свойство проводить электрический ток лучше многих металлов, например таких, как медь. Технология изготовления полимерных проводников уже освоена, и число разновидностей таких проводников становится все больше. Под воздействием определенных реагентов полипарафенилен, парафениленсульфид, полипиррол и другие полимеры приобретают электропроводящие свойства. В настоящее время разрабатываются технологии синтеза полимерных проводников, обладающих прочностью, термопластичностью и эластичностью. Проводятся работы по созданию электрохимическим методом дешевых фотоэлектрических элементов для преобразования солнечной энергии в электрическую. Возможно, с помощью полимерных электродов удастся создать легкие батареи с подзарядкой и большой плотностью аккумулирующей энергии. В некоторых твердых материалах с ионной подвижной структурой подвижность ионов сравнивается с подвижностью ионов в жидкости. Подобные материалы – твердотельные ионные проводники – используются в устройствах памяти, дисплеях, датчиках, а также в качестве электролитов и электродов в батареях. Например, бета-алюминий натрия служит твердым проводящим электролитом в натриево-серной батарее. Обычно ионное твердотельное вещество, например хлорид натрия, имеет определенный химический состав и является диэлектриком. При получении твердотельных электролитов создаются структурные дефекты и формируется состав с отличным от целочисленного соотношения между его компонентами. Носители заряда вводятся между слабо связанными слоями решетки, где они могут свободно перемещаться. Такими подвижными носителями заряда могут служить ионы лития или водорода, а матрицу для их внедрения может образовать, например, графит. Ионные проводники на основе диоксида циркония находят применение, например, при изготовлении чувствительных элементов кислородного анализатора выхлопных газов автомобиля. При создании современной микроэлектронной техники и высокочувствительной аппаратуры используются разнообразные анизотропные материалы с анизотропными электрическими, магнитными и оптическими свойствами. Такими свойствами обладают ионные кристаллы, органические молекулярные кристаллы, полупроводниковые и многие другие материалы. Например, поливинилденхлорид (CH2CCI2,)n, изменяющий форму в электрическом поле, применяется в гидролокаторах и микрофонах. Анизотропные тонкопленочные магнитные материалы служат основой для создания современных высокоплотных накопителей информации. Современная технология позволяет получить проводящие стекла – материал в виде стекла, но не с диэлектрическими свойствами, а с металлической проводимостью или полупроводниковыми свойствами. Такая технология основана на быстром замораживании жидкости, конденсации газовой фазы на очень холодную поверхность или имплантации ионов на поверхность твердого вещества. Например, некристаллический кремний с полупроводниковыми свойствами можно получить в результате быстрой конденсации продуктов, образующихся в тлеющимся разряде в атмосфере газообразного силана SiH4 . Из данного материала можно изготавливать дешевые солнечные батареи. Рабочие параметры таких батарей в значительной степени зависят от концентрации примесей водорода, химически связанного с неупорядоченно расположенными атомами кремния. Таким образом, с применением современных технологий можно получить новые материалы с необычным комплексом свойств, не наблюдаемых в традиционных материалах.
|
СОДЕРЖАНИЕ: Концепции современного естествознания
Смотрите также:
Естествознание. НОВЕЙШАЯ РЕВОЛЮЦИЯ В ЕСТЕСТВОЗНАНИИ
Этим естествознание наступившей новой исторической эпохи существенно отличалось от естествознания.
Общие условия развития естествознания
В своем труде «Материализм и эмпириокритицизм», опубликованном в 1909 г., Ленин ответил на кардинальные философские, вопросы, возникшие в ходе развития естествознания.
естествознание. НОВЕЙШАЯ РЕВОЛЮЦИЯ В ЕСТЕСТВОЗНАНИИ...
Общие условия развития естествознания. Борьба передовых и реакционных идей в естествознании.
СТАНОВЛЕНИЕ МЕДИЦИНЫ. Внедрение естествознания в медицину
естествознания в области медицины ... В тесной связи со всеми медицинскими предметами она не только принесла свет к постели больного и всяческие благодеяния...
...вокруг света (1831—1836) и его значение в истории естествознания
областях естествознания, что проф. Генсло, рекомендуя его в 1831 г. в качестве натуралиста на «Бигль», руководился далеко не одной лишь своей интуицией.
ВНУТРЕННЯЯ МЕДИЦИНА терапия. Клиническая медицина
Все это вело к серьезному отставанию клинической медицины того времени от развивающегося естествознания. ВНУТРЕННЯЯ МЕДИЦИНА (терапия).
...и науки Бэкон выступил как провозвестник опытного естествознания...
...с одной стороны, о качественно простых природах, а с другой, - о чём-то более близком будущим объяснительным моделям механистического естествознания.
Медицина В ЗАПАДНОЙ ЕВРОПЕ В ПЕРИОД ПОЗДНЕГО СРЕДНЕВЕКОВЬЯ...
В эпоху Возрождения основными чертами естествознания стали: утверждение опытного метода в науке, развитие математики и механики, метафизическое мышление...
Революция в естествознании, идущая на протяжении всего XX...
И таким образом в научном мире сложился странный парадокс: представители естествознания, изучающие заведомо более простые объекты, давно открыли сложность, многомерность...
НИКОЛАЙ КУЗАНСКИЙ. Биография и трактаты Николая Кузанского....
космологии Коперника и опытного естествознания. Николай Кузанский родился в селении Куза в Южной Германии в 1401 году Отец.
Последние добавления:
Валеология. Вайнер Валеология География мирового хозяйства Языковедение
Туристская деятельность Сборник задач по банковскому делу Логика и аргументация