Измерения отношения к риску. Исследуем график функции полезности. Формально мы имеем график вогнутой функции, о которой известно, что ордината любой точки кривой больше ординаты точки хорды кривой

  Вся электронная библиотека >>>

 Моделирование рисковых ситуаций  >>

 

Учебные пособия

Моделирование рисковых ситуаций в экономике и бизнесе


Раздел: Экономика

4.2. ИЗМЕРЕНИЕ ОТНОШЕНИЯ К РИСКУ

 

Исследуем график функции полезности, представленной на рис. 4.4. Для такого типа ЛПР полезность среднего выигрыша (полезность ОДО) больше ожидаемой полезности игры: с веро­ятностью p выиграть М1 и с вероятностью (1 - р) выиграть М2.

Рис. 4.4. График функции полезности ЛПР, не склонного к риску

 

Формально мы имеем график вогнутой функции, о которой известно, что ордината любой точки кривой больше ординаты точки хорды кривой. Определим соотношение, характеризующее ЛПР, не склонного к риску. Нетрудно видеть, что

U(M1) - значение полезности в точке А;

U(M2) - значение полезности в точке В;

U(pM1 + (1 - р)М2) - значение полезности в точке С.

Уравнение хорды АВ имеет вид:

U1 = а +  bМ ,

где U1 - совокупность точек, лежащих на отрезке прямой.

Найдем значения параметров а и b уравнения прямой.

В точке А имеем U(M1) = а + bМ1.

В точке В имеем U(M2) = а + bМ2.

Вычитаем из первого выражения второе, исключая величину a:

U(M1) – U(M2) = b(M1 – М2) ,

 

 

откуда получаем:

                                         

После подстановки значений для параметров а и b уравнение хорды АВ имеет вид:

                                         

где М1 £ М £ M2.

Пусть М = рМ1 + (1 – р)М2, где 0 £ р £ 1, тогда в точке С справедливо неравенство

Подставив в это неравенство вычисленные значения а и b, получим:

                                         

или

U(pM1 + (1 - р)М2) > PU(M1) + (1 - p)U(M2).                                  (4.2)

Неравенство (4.2) характерно для функции полезности ЛПР, не склонных к риску. Оно действительно показывает, что полез­ность среднего выигрыша (полезность ОДО) больше ожидаемой полезности игры: с вероятностью р выиграть М1 и с вероятнос­тью (1 – р) выиграть М2.

Аналогично можно показать, что для функций полезности ЛПР, склонных к риску, справедливо неравенство

U(pM1 + (1 – р)М2) < pU(M1) + (1 – p)U(M2).                                 (4.3)

Для функций полезности ЛПР, безразличных (нейтральных) к риску, имеет место равенство

U(pM1 + (1 – р)М2) = pU(M1) + (1 – p)U(M2).                                 (4.4)

Склонность или несклонность ЛПР к риску, как уже отмеча­лось, зависит от его финансового положения, текущей ситуации принятия решения и других факторов. Иначе говоря, эта харак­теристика ЛПР не является абсолютной, присущей ему при любых обстоятельствах.

Приведем пример игры, по отношению к которой любой игрок не склонен к риску.

Петербургский парадокс (игра придумана петербургскими гусарами). Играют двое. Один бросает монету до тех пор, пока не выпадет «орел». Выигрыш равен (2)n руб., где п - число брос­ков до появления «орла». Ожидаемая величина выигрыша:

ОДО = 2(1/2) + (2)2 (1/4) + (2)3(1/8) + ... = 1+1+1+ ... .

Вряд ли какой-либо игрок согласится заплатить за право участвовать в этой игре сумму, равную ОДО: эта сумма беско­нечно велика.

Предположим теперь, что имеет место игра (лотерея) с аль­тернативами a и в, т.е. G(a,в: a). Исследуем проблему, как целе­сообразнее поступить ЛПР: играть или получить гарантирован­ный выигрыш, равный ожидаемому выигрышу. Пусть функция полезности игрока определена как U(W) = ln(W), где W- вели­чина благосостояния. Пусть игра заключается в выигрыше 5 дол. с вероятностью 0,8 и в выигрыше 30 дол. с вероятностью 0,2. Ожидаемая величина выигрыша (ОДО):

E(W) = 5*0,8 + 30*0,2 = 10 дол.

Для указанной логарифмической функции полезности имеем зависимость, выраженную в табл. 4.1.

Таблица 4.1

W

1

5

10

20

30

U(W)

0

1,61

2,30

3,00

3,40

 

Рассчитаем полезность ОДО для данной игры:

U(E(W)) = U(10) = ln(10) = 2,3,

т.е. полезность отказа от игры при получении гарантированного выигрыша, равного 10 дол. (ОДО данной игры), оценивается в 2,3 ютиля (ютиль - условная единица полезности). Если ЛПР предпочтет игру, то

E(U(W)) = 0,8U(5) + 0,2U(30) = 0,8*1,61 + 0,2*3,40 = 1,97 ютиля.

Для рассмотренной логарифмической функции полезности большей полезностью обладает вариант с получением гарантированного выигрыша, равного E(W)=ОДО, а не участие в игре (2,3 > 1,97). Такое лицо, принимающее решение, не склонно к риску.

Выводы. Из соотношении (4.2) – (4.4) вытекает:

• если U(E(W)) > E(U(W)), игрок не склонен к риску;

• если U(E(W)) = E(U(W)), игрок нейтрален (безразличен) к риску;

• если U(E(W)) < E(U(W}), игрок склонен к риску.

Здесь Е и U - соответственно символы математического ожидания и функции полезности.

 

К содержанию книги:   Моделирование рисковых ситуаций в экономике и бизнесе

 

Смотрите также:

 

    ПРЕДПРИНИМАТЕЛЬСКИЙ РИСК предпринимательская ...

Такие предприниматели готовы рисковать, в рисковой ситуации они
маневрируют ресурсами, способны очень быстро находить новых партнеров
bibliotekar.ru/biznes-41/29.htm

 

  Риск-менеджмент. Организация риск-менеджмента

Одна и та же рисковая ситуация воспринимается разными людьми по-
разному. Поэтому оценка риска и выбор финансового решения во многом ...
bibliotekar.ru/finance-2/102.htm

 

  СТРАХОВАНИЕ. Организационная структура страхования

Страхование как экономическая категория включает следующие элементы:
рисковые обстоятельства, ситуация риска, стоимость (оценка) объекта ...
bibliotekar.ru/risk-menedgment/7.htm

 

  Риск-менеджмент - часть финансового менеджмента

Объектом управления в риск-менеджменте являются риск, рисковые
вложения .... При отсутствии типовых ситуаций финансовый менеджер
bibliotekar.ru/risk-menedgment/4.htm

 

  Потребность делать нечто лучше, чем оно было сделано вчера ...

В отличие от менеджера, для предпринимателя поиск рисковых ситуаций и
умение их разрешать обладают самодостаточной ценностью. Только на ...
bibliotekar.ru/menedzhment-2/195.htm

 

  КЛАССИФИКАЦИЯ ПРЕДПРИНИМАТЕЛЬСКИХ РИСКОВ С ...

С риском предприниматель сталкивается на разных этапах своей
деятельности, и, естественно, причин возникновения рисковой ситуации ...
bibliotekar.ru/biznes-41/30.htm

 

  Расчетно-кассовое обслуживание населения. Чековая книжка ...

В магазин не надо везти крупные суммы денег и покупатель избавлен от
рисковых ситуаций в дороге. В свою очередь магазин освобождается от ...
bibliotekar.ru/bank-4/36.htm

 

  Транснациональная корпорация (ТНК) представляет собой ...

... системы, коммунальные услуги; экономические и финансовые условия;
восприятие культуры; рисковые ситуации, включая политический риск (рис. ...
bibliotekar.ru/teoriya-organizacii/140.htm

 

  Управление риском. Понятие и виды экономических рисков ...

«Ситуация риска» отличается от «ситуации неопределенности». ... Эти
мероприятия и составляют содержание рисковой политики. ...
bibliotekar.ru/biznes-38/16.htm

Политика доходов и заработной платы 

 

Разработка управленческого решения

 

Исследование систем управления 

 

Организационное поведение и управление персоналом