Учебные пособия |
Моделирование рисковых ситуаций в экономике и бизнесе Раздел: Экономика |
Пусть по-прежнему полезность выражается логарифмической зависимостью U(W) = ln(W) (см. табл. 4.1).
Определим, какую максимальную сумму пожелает заплатить ЛПР, чтобы избежать игры, в которой с вероятностью 0,8 он выигрывает 5 дол. (уменьшение выигрыша на 5 дол. по сравнению с ОДО = 10 дол.) и с вероятностью 0,2 выигрывает 30 дол. (увеличение выигрыша на 20 дол. по сравнению с ОДО). Значение ожидаемой полезности игры составляет 1,97 ютиля, что соответствует гарантированному выигрышу 7,17 дол. (ln7,17 = 1,97). С другой стороны, сумма ожидаемого выигрыша в случае игры (ОДО) равна 10 дол. Поэтому, чтобы избежать игры, ЛПР согласится заплатить максимальную сумму, равную
10 – 7,17 = 2,83 дол.
Из этого следует, что, если ЛПР предлагают застраховаться от игры и просят за это сумму, меньшую, чем 2,83 дол., ему выгодно принять предложение. В данном случае величина, равная 2,83 дол., - премия (максимальная плата) за риск.
Рассмотрим некоторые приложения теории полезности.
Задача 4.2. Оптимальная величина страхования. Ювелир владеет бриллиантом стоимостью 100 000 дол. и желает застраховать его от кражи. Страховка покупается по правилу: цена страховки составляет 20 % от суммы, которую страхуют. Например, если бриллиант страхуется на всю стоимость (100 000 дол.), страховка стоит 20 000 дол., если страхуется на половину цены (50 000 дол.). то страховка обходится в 10 000 дол. Если ювелир будет знать (построит) свою функцию полезности, он сможет рассчитать, на какую оптимальную сумму следует застраховать дорогую вещь.
Ювелир может оказаться в одной из двух ситуации: 1) бриллиант украден; 2) бриллиант не украден. Чем больше сумма страхования, тем больше его состояние (капитал), если бриллиант украден, но тем меньше его состояние, если бриллиант не украден.
Например, если бриллиант застрахован на 50 000 дол., имеют место два случая:
1. Бриллиант украден. При этом потери ювелира рассчитываются следующим образом:
-100 000 (бриллиант) - 10 000 (страховка) + 50 000 (компенсация) = -60 000 дол., а капитал 50 000-10 000 = 40 000 дол.
2. Бриллиант не украден. В этом случае капитал ювелира составит:
100 000 (бриллиант) - 10 000 (страховка) = 90 000 дол.
Если бриллиант застрахован на 100 000 дол., то в случае кражи бриллианта капитал составит 100 000 - 20 000 = 80 000 дол. Если бриллиант не украден, капитал также составит 80 000 дол. Обозначим капитал ювелира в случае, если бриллиант не украден, через Yn:
Yn = 100 000 - 0,2К, (4.5)
где К - сумма страхования.
Если бриллиант украден, то капитал ювелира определим как Yt:
Yt = 0,8 K .
Соответствующий график, отражающий бюджетное ограничение, представлен на рис. 4.5.
Рис. 4.5. Графическое решение задачи 4.2
Предположим, что можно экспертно определить вероятность р того, что бриллиант будет украден. Тогда полезность капитала Yt, равна U(Yt). Вероятность того, что бриллиант не украден, составляет (1-р), и U(Yn) - полезность капитала Yn в этом случае.
Ожидаемая полезность U «игры» (с вероятностью р бриллиант украден и с вероятностью (1 - р) - не украден) определяется согласно формуле (4.1) выражением
U = pU(Yt)+(1-p)U(Yn).
Значения Yt и Yn следует выбирать таким образом, чтобы ожидаемая полезность была максимальной, т.е.
pU(Yt) + (1-р)(Yn) max
.
Пусть точка касания кривой безразличия (линия одинаковой полезности) на рис. 4.5 соответствует Yn = 86 000 дол., Yt = 56 000 дол.
Тогда согласно формуле (4.5) имеем: 86 000 = 100 000 - 0,2К, откуда оптимальная величина страхования К = 70 000 дол.
Задача 4.3. Спрос на страхование. Пусть финансовое состояние индивида оценивается заданным значением W. Предполагается, что можно вычислить вероятность р потери некоторой части этого состояния, определяемой суммой L £ W (например, в результате пожара). Индивид может купить страховой полис, в соответствии с которым ему возместят нанесенный ущерб в размере q. Плата за страхование составляет pq, где p - доля страхования в объеме нанесенного ущерба. Проблема состоит в определении значения q.
Исследуем задачу максимизации ожидаемой
полезности финансового состояния индивида в ситуации, когда с вероятностью р
страховой случай происходит и с вероятностью (1 –р) - не происходит.
Тогда задача сводится к поиску максимума по q ожидаемой полезности
капитала индивида:
Применим необходимое условие оптимальности - продифференцируем выражение в квадратных скобках по q и приравняем производную нулю:
где q* - оптимальное значение q. В результате получаем:
Предполагая известным вид функции U, из соотношения (4.6) находим значение q*.
Рассчитаем ожидаемую прибыль страховой компании, учитывая, что страховой случай имеет вероятностный характер.
Если страховой случай произошел, компания получает доход pq – q. Если страховой случай не наступил, компания получает доход pq. Поэтому ожидаемая прибыль компании
р(pq - q)+ (1 - р) pq = ppq - pq + pq - ppq = q(p - р),
где р - вероятность наступления страхового случая.
Конкуренция между страховыми компаниями уменьшает прибыль, которая в условиях совершенной конкуренции стремится к нулю, т.е. из условия q(p - р) = 0 следует, что p р.
Это означает, что доля платежа от
страхуемой суммы p приближается к вероятности несчастного случая р.
Если соотношение p = р ввести в условие максимума ожидаемой полезности, то
получим:
.
Если потребитель не склонен к риску, то , и из равенства первых производных следует равенство аргументов, т.е.
W – L + (1 - p)q* =W – pq*,
или
– L + q* – pq* = –pq*,
откуда
q* = L.
Вывод. Страховаться целесообразно на сумму, которую можно потерять в результате несчастного случая.
К содержанию книги: Моделирование рисковых ситуаций в экономике и бизнесе
Смотрите также:
ПРЕДПРИНИМАТЕЛЬСКИЙ РИСК предпринимательская ...
Такие предприниматели готовы рисковать, в рисковой
ситуации они |
Риск-менеджмент. Организация риск-менеджмента
Одна и та же рисковая ситуация воспринимается
разными людьми по- |
СТРАХОВАНИЕ. Организационная структура страхования
Страхование как экономическая категория включает
следующие элементы: |
Риск-менеджмент - часть финансового менеджмента
Объектом управления в риск-менеджменте являются
риск, рисковые |
Потребность делать нечто лучше, чем оно было сделано вчера ...
В отличие от менеджера, для предпринимателя поиск
рисковых ситуаций и |
КЛАССИФИКАЦИЯ ПРЕДПРИНИМАТЕЛЬСКИХ РИСКОВ С ...
С риском предприниматель сталкивается на разных
этапах своей |
Расчетно-кассовое обслуживание населения. Чековая книжка ...
В магазин не надо везти крупные суммы денег и
покупатель избавлен от |
Транснациональная корпорация (ТНК) представляет собой ...
... системы, коммунальные услуги; экономические и
финансовые условия; |
Управление риском. Понятие и виды экономических рисков ...
«Ситуация риска» отличается от «ситуации
неопределенности». ... Эти |
Политика доходов и заработной платы
Разработка управленческого решения
Исследование систем управления