Проектирование маршрутов городского транспорта. Выбор трассы новой автобусной линии в городе. Построен за городом новый жилой микрорайон, который нужно связать с центром города

  Вся электронная библиотека >>>

 Моделирование рисковых ситуаций  >>

 

Учебные пособия

Моделирование рисковых ситуаций в экономике и бизнесе


Раздел: Экономика

8.1. ПРОЕКТИРОВАНИЕ МАРШРУТОВ ГОРОДСКОГО ТРАНСПОРТА

 

Задача 8.1. Выбор трассы новой автобусной линии в городе. Построен за городом новый жилой микрорайон, который нужно связать с центром города. Имеем исходную стратегическую игру (W,A,L). Статистик пришел к выводу, что линию можно провести до пункта А1, или А2, или А3. Решение А = {а1, а2, а3}, где a1, означает проведение трассы до А1, а2 - до А2, а3 - до А3, причем А1 и А3 находятся в разных концах города. Множеством состоя­ний природы W являются Q1, Q2, Q3 - состояния, когда большин­ство жителей микрорайона работает соответственно в окрестнос­ти пункта А1, пункта А2 и пункта А3, находящегося в самом центре города.

Если принятое решение провести трассу не будет удовлетво­рять нужды жителей микрорайона, то транспортное предприя­тие понесет потери. Потери будут максимальными при ошибоч­ном решении проложить трассу к пункту А3 вместо А1 или на­оборот.

Решение. Функция L(Q, а) потерь характеризуется матри­цей (табл. 8.1).

Таблица 8.1

 

Преобразуем стратегическую игру (W, A, L) в статистичес­кую (W, D, R) при учете информации о действительном состоя­нии природы. Для этого проводится выборочный опрос жителей микрорайона. Результаты этого опроса образуют вектор

                                                     

где x1, х2, х3, - доля от общего числа опрошенных (не менее 50 %), которые предлагают строительство трассы до пунктов А1, А2, A3 соответственно;

x4 — любое из трех направлений не получило решающего количества голосов.

 

 

Действительные данные результата опроса показали следую­щие вероятности рекомендаций жителей (табл. 8.2) в зависимо­сти от состояний природы Q.

Таблица 8.2

 

В результате опроса получаем условные вероятности P(x1|Q1) = P(x2|Q2) = P(x3|Q3) = 0,7. Пусть d(x) = а - нерандомизированная функция решения, преобразующая множество Х результатов эк­сперимента в множество решений. Множество D нерандомизи­рованных решений при наличии четырех результатов экспери­мента и трех возможных решений будет иметь 34 = 81 различ­ную функцию решений статистика в статистической игре с при­родой (W, D, R}. Из них мы ограничимся шестью допустимыми функциями: d1, d2, ... , d6 (табл. 8.3).

Таблица 8.3

 

 

Какие же решения не вошли в допустимые? Недопустимые функции решения — это все функции dÎD, которые не ставят в соответствие хотя бы одному из результатов x1, x2, x3 решение а1, а2, a3 потому, что для этих функции значе­ние риска R(Q, d) будет всюду большим по сравнению с други­ми функциями решений. Результат х4 при этом во внимание не принимается, поскольку он не отражает конструктивного пред­ложения.

Учтем полученные условные вероятности и, зная значения функций потерь, вычислим математические ожидания функций потерь, т. е. получим функции риска для допустимых функций решений:

Из табл. 8.3 видно, что вне зависимости от х1, х2 х3, х4 реше­ние d4 будет соответствовать решению а1, d5®a2, d6®a3.

Объединим все полученные решения в табл. 8.4 и выпишем минимальные значения функции риска по строке и максималь­ные значения - по столбцу.

Таблица 8.4

 

Таким образом, как показывает табл. 8.4, среди нерандо­мизированных функций решений нет минимаксной функции: v1=0<v2=1,75. Следовательно, минимаксную функцию реше­ния надо искать во множестве D* рандомизированных функций d.

В данной статистической игре (W, D, R) в качестве оптималь­ной нужно принять минимаксную функцию решения.

Для того чтобы найти рандомизированную минимаксную функцию решения d0, следует обратиться к линейному програм­мированию (см. приложение).

Пусть d - распределение вероятностей на множестве неран­домизированных функций решения d. Обозначим это распреде­ление h1 = P(d1), h2 = P(d2), ... , h6 = P(d6). Теперь обозначим через u цену расширенной статистической игры (W, D*, R) при рандо­мизации функций решений и запишем в терминах линейного про­граммирования задачу статистика, который решает ее в интере­сах транспортного предприятия.

Для этого воспользуемся данными табл. 8.4:

Преобразуем переменные, разделив h на цену игры u> 0, и введем дополнительные переменные q7, q8, q9. В результате пе­рейдем от неравенств к равенствам:

при qj > 0, j = .

Решим эту задачу линейного программирования симплексным методом (техника решения известна и здесь не излагается) и получим базисное оптимальное решение:

q1 = q3 = 2/7; q2 = q4 = q5 = qб = 0.

Значит, Zmax = q1 + q3 = 2/7 +2/7 = 4/7.

Отсюда  u = l/Zmax = 2/7 = 1,75.

Перейдем к исходным переменным hi = qi u; i = , где hi - вероятности, с которыми следует сочетать соответствующие нерандомизированные функции решения di (i = ). После пере­множения получим рандомизированные функции d:

Итак, получена минимаксная рандомизированная функция ре­шения d0 с распределением вероятностей: P(d1) = 1/2; P(d3) = 1/2. Как ее охарактеризовать? Это смешанная стратегия d0 с одина­ковыми вероятностями чистых функций решения d1 и d3. Они различаются только результатом статистического эксперимента.

Вывод. В задаче выбора транспортным предприятием наи­лучшей трассы маршрута новой автобусной линии получена оптимальная минимаксная функция решения:

• если по эксперименту с анкетами получен результат х1, или x2, или x3, то следует принять решение а1 или а2, или a3  соответ­ственно;

• если получен результат х4, то нужно использовать механизм случайного выбора между решениями а1 (трассу вести до А1) и a3 (трассу вести до А3) с одинаковыми вероятностями, равными 0,5. Следует сделать одно важное замечание: в данном случае мы из расчетов получили одинаковые вероятности. (Это реше­ние не имеет ничего общего с принципом равновероятности, который иногда необоснованно применяется при отсутствии информации о возможных вероятностях событии.)

 

К содержанию книги:   Моделирование рисковых ситуаций в экономике и бизнесе

 

Смотрите также:

 

    ПРЕДПРИНИМАТЕЛЬСКИЙ РИСК предпринимательская ...

Такие предприниматели готовы рисковать, в рисковой ситуации они
маневрируют ресурсами, способны очень быстро находить новых партнеров
bibliotekar.ru/biznes-41/29.htm

 

  Риск-менеджмент. Организация риск-менеджмента

Одна и та же рисковая ситуация воспринимается разными людьми по-
разному. Поэтому оценка риска и выбор финансового решения во многом ...
bibliotekar.ru/finance-2/102.htm

 

  СТРАХОВАНИЕ. Организационная структура страхования

Страхование как экономическая категория включает следующие элементы:
рисковые обстоятельства, ситуация риска, стоимость (оценка) объекта ...
bibliotekar.ru/risk-menedgment/7.htm

 

  Риск-менеджмент - часть финансового менеджмента

Объектом управления в риск-менеджменте являются риск, рисковые
вложения .... При отсутствии типовых ситуаций финансовый менеджер
bibliotekar.ru/risk-menedgment/4.htm

 

  Потребность делать нечто лучше, чем оно было сделано вчера ...

В отличие от менеджера, для предпринимателя поиск рисковых ситуаций и
умение их разрешать обладают самодостаточной ценностью. Только на ...
bibliotekar.ru/menedzhment-2/195.htm

 

  КЛАССИФИКАЦИЯ ПРЕДПРИНИМАТЕЛЬСКИХ РИСКОВ С ...

С риском предприниматель сталкивается на разных этапах своей
деятельности, и, естественно, причин возникновения рисковой ситуации ...
bibliotekar.ru/biznes-41/30.htm

 

  Расчетно-кассовое обслуживание населения. Чековая книжка ...

В магазин не надо везти крупные суммы денег и покупатель избавлен от
рисковых ситуаций в дороге. В свою очередь магазин освобождается от ...
bibliotekar.ru/bank-4/36.htm

 

  Транснациональная корпорация (ТНК) представляет собой ...

... системы, коммунальные услуги; экономические и финансовые условия;
восприятие культуры; рисковые ситуации, включая политический риск (рис. ...
bibliotekar.ru/teoriya-organizacii/140.htm

 

  Управление риском. Понятие и виды экономических рисков ...

«Ситуация риска» отличается от «ситуации неопределенности». ... Эти
мероприятия и составляют содержание рисковой политики. ...
bibliotekar.ru/biznes-38/16.htm

Политика доходов и заработной платы 

 

Разработка управленческого решения

 

Исследование систем управления 

 

Организационное поведение и управление персоналом