Учебные пособия |
Моделирование рисковых ситуаций в экономике и бизнесе Раздел: Экономика |
Пусть Q - рыночный спрос на продукт торговой фирмы для фиксированного периода (день, неделя, месяц). Воспримем это как спрос игрока 1. Этот спрос может быть любым действительным положительным числом. Область состояний W = [0, ¥]. Продаваемый продукт оценивается, например, в килограммах и может заказываться в любом количестве. Нереализованный в данном периоде продукт не может быть продан в следующем периоде, так как теряет за время хранения свои потребительские качества. Значение QÎW заранее неизвестно.
Введем обозначения: а - запас
продукта на некоторый период. Следовательно, считаем, что множество решений
фирмы А = [0, ¥]; аÎА - конкретное решение фирмы
(игрока 2), принимаемое в статистической игре с природой, которая определяет
действительный спрос Q на продукт; L(Q, a)
- функция потерь. Она является функцией платежей в исходной стратегической игре
(W, A, L); k1 - себестоимость +
дополнительные затраты на хранение
k2- потеря прибыли на
Принимая указанные обозначения, запишем кусочно-линейную функцию потерь фирмы:
Стратегическую игру (W, A, L) можно преобразовать в статистическую, если получить дополнительную статистическую информацию о спросе на продукт QÎW. Действительный спрос по периодам представлен заказчиком. Это вектор
который в различные периоды времени представляет разные размеры спроса. Пусть а = d(x) - статистическая нерандомизированная функция решения. Значение функции, определяющей оптимальное решение а об уровне запаса, найдем с помощью байесовской функции решения.
Известна функция действительного спроса на товар, соответствующего статистическому наблюдению, т. е. .
Функцию априорного наблюдения G(Q|) распределения спроса (состояний природы) обозначим F(Q).
Имеет место теорема: «Если, решая задачу, поставленную в форме статистической игры, статистик (игрок 2) провел эксперимент, наблюдая случайную величину Х с функцией условного распределения G(Q|) или [F(Q)], и получил результат х, то неслучайная байесовская функция решения относительно некоторого априорного распределения x состояний природы равна а = d(x), где а Î А - решение, минимизирующее ожидаемое значение функции потерь L(Q, а) в условном апостериорном распределении состояний природы, заданном функцией распределения G(Q| x)».
Согласно данной теореме нужно минимизировать математическое ожидание
С использованием формулы (8.1) можно определить математическое ожидание при апостериорном распределении спроса Q:
Минимизируя математическое ожидание функции потерь (8.2) относительно о, получим:
где f(a) - плотность в точке а апостериорного распределения спроса. В соответствии с необходимым условием (8.3) получим уравнение
откуда
Итак, с помощью байесовской функции получено выражение для оптимального запаса. Оно равно числу а0, удовлетворяющему равенству
где F(a0) -функция апостериорного распределения спроса Q на продукт.
Результат (8.4) с учетом (8.5) означает, что для a0 в распределении спроса Q должно выполняться условие . Значит, a0 должно быть квантилем порядка апостериорного распределения спроса Q.
Для вычисления оптимального запаса а0 данного продукта на определенный период времени нужно:
1. Знать параметры k1 и k2, входящие в функцию потерь L(Q, a).
2. На основе статистических наблюдений получить апостериорное распределение спроса на товар.
3. С помощью функции этого распределения определить квантиль порядка .
Если, в частности, k1 = k2, то оптимальный уровень запаса a0 будет соответствовать равенству F(a0) = . Другими словами, оптимальный уровень запаса представляет собой медиану в апостериорном распределении спроса Q.
Распределение близко к нормальному N(M, d), где М - математическое ожидание, d - среднее квадратичное отклонение.
Значение a0 (или квантиль порядка ) можно определить по таблице нормированного нормального распределения.
Иногда распределение не относится ни к одному из известных исследователю законов распределения, тогда с помощью графика функции распределения спроса нужно определить квантиль порядка . Рассмотрим, как это делается на практике.
Пример 8.6. Требуется определить оптимальное значение запаса товара. Известно: k1 = 0,8; k2 = 0,2; распределение спроса Q.
Решение. Представим распределение дневного спроса на товар, полученное по данным наблюдения (табл. 8.11).
Таблица 8.11
Доход, тыс. руб. |
Частота |
Накопленная частота |
0-5 |
0,03 |
0,03 |
5-10 |
0,07 |
0,10 |
10-15 |
0,10 |
0,20 |
15-20 |
0,20 |
0,40 |
20-25 |
0,25 |
0,65 |
25-30 |
0,25 |
0,90 |
. 30-35 |
0,08 |
0,98 |
35-40 |
0,02 |
1,00 |
По табл. 8.11 строим график распределения спроса на товар (рис. 8.3).
Рис. 8.3. Определение квантиля распределения
Рассчитаем квантиль распределения:
По квантилю, равному 0,2 (см. рис. 8.3), определяем a0 = 12,3 тыс. руб. Это стоимостное выражение искомого оптимального запаса продукции торговой фирмы, равное 12,3 тыс. руб.
К содержанию книги: Моделирование рисковых ситуаций в экономике и бизнесе
Смотрите также:
ПРЕДПРИНИМАТЕЛЬСКИЙ РИСК предпринимательская ...
Такие предприниматели готовы рисковать, в рисковой
ситуации они |
Риск-менеджмент. Организация риск-менеджмента
Одна и та же рисковая ситуация воспринимается
разными людьми по- |
СТРАХОВАНИЕ. Организационная структура страхования
Страхование как экономическая категория включает
следующие элементы: |
Риск-менеджмент - часть финансового менеджмента
Объектом управления в риск-менеджменте являются
риск, рисковые |
Потребность делать нечто лучше, чем оно было сделано вчера ...
В отличие от менеджера, для предпринимателя поиск
рисковых ситуаций и |
КЛАССИФИКАЦИЯ ПРЕДПРИНИМАТЕЛЬСКИХ РИСКОВ С ...
С риском предприниматель сталкивается на разных
этапах своей |
Расчетно-кассовое обслуживание населения. Чековая книжка ...
В магазин не надо везти крупные суммы денег и
покупатель избавлен от |
Транснациональная корпорация (ТНК) представляет собой ...
... системы, коммунальные услуги; экономические и
финансовые условия; |
Управление риском. Понятие и виды экономических рисков ...
«Ситуация риска» отличается от «ситуации
неопределенности». ... Эти |
Политика доходов и заработной платы
Разработка управленческого решения
Исследование систем управления