Наука и культура |
Альберт ЭйнштейнРазделы: Рефераты по истории и культуре |
Ответы на общие вопросы, в свое время вызывавшие ожесточенные дискуссии, в наши дни известны каждому начинающему. А мне хочется сегодня, когда Эйнштейна уже нет с нами, сказать, как много сделал для квантовой физики этот человек с его вечным, неукротимым стремлением к совершенству, к архитектурной стройности, к классической законченности теорий, к единой системе, на основе которой можно было бы развивать всю физическую картину. В каждом новом шаге физики, который, казалось бы, однозначно следовал из предыдущего, он отыскивал противоречия, и противоречия эти становились импульсом, толкавшим физику вперед. На каждом новом этапе Эйнштейн бросал вызов науке, и, не будь этих вызовов, развитие квантовой физики надолго бы затянулось.
В то время когда Эйнштейн в Берлине искал пути к общей теории относительности, в Копенгагене началось новое движение в теоретической физике, которое вскоре оказалось в центре общего внимания. Нильс Бор применил квантовые идеи к объяснению строения атома.
Исходным пунктом генезиса атомной физики был периодический закон Менделеева. За сорок лет, прошедших с 1869 г. - года открытия периодического закона, - было сделано немало попыток физической интерпретации периодичности. Многие стремились объяснить, почему в ряду элементов, расположенных в порядке возрастания атомного веса, периодически, через определенное число элементов, повторяются химические свойства, появляются сходные по своим свойствам элементы. Открытие дискретных частей атома позволило решить задачу.
В 1911 г. Резерфорд своими экспериментами доказал, что атом состоит из ядра, находящегося в центре атома и занимающего ничтожную часть его объема, а также из отрицательно заряженных частиц - электронов, движущихся вокруг ядра. Эта первоначальная схема впоследствии стала более сложной. Был выяснен состав ядер: в них находятся протоны, несущие положительный электрический заряд, и электрически незаряженные нейтроны. Орбиты электронов располагаются как бы слоями; близкие орбиты образуют оболочки атомов; в ряду все более тяжелых атомов, т.е. атомов, включающих все больше ядерных частиц и соответственно все большее число обращающихся вокруг ядра электронов, мы встречаем сначала одну оболочку, потом две и т.д. На внешней оболочке, при переходе к все более тяжелым атомам, мы встречаем один, два, три и т.д. электрона, потом, когда орбита заполнена, мы снова встречаем один, два и т.д. электрона на следующей оболочке. Каждая оболочка заполняется определенным числом электронов. Таким образом, в ряду все более тяжелых атомов через определенное число номеров встречаются атомы с тем же числом внешних электронов, т.е. электронов, находящихся на внешней оболочке. Поскольку химические и некоторые физические свойства элементов зависят от числа внешних электронов, эти свойства периодически повторяются.
Однако представление об электроне, обращающемся по орбите, не согласуется с законами электродинамики. Такой электрон должен излучать электромагнитные волны, которые постепенно будут уносить энергию электрона, и последний, двигаясь все медленнее, в конце концов не сможет противостоять притяжению ядра и упадет на ядро. Подобный вывод противоречит устойчивости атомов.
Чтобы выйти из наметившегося, очень тяжелого противоречия, Нильс Бор предположил, что электрон может двигаться лишь по некоторым определенным орбитам, которым соответствуют определенные значения энергии движущегося электрона. Находясь на орбите, электрон не излучает электромагнитных волн. Он излучает их, перескакивая с одной орбиты на другую. При этом энергия атома уменьшается на величину, равную разности между энергией, свойственной покинутой орбите, и энергией, свойственной достигнутой орбите. Энергия эта уносится электромагнитным излучением. Электромагнитное излучение состоит из открытых Эйнштейном квантов света - фотонов. Переход электрона на другую орбиту вызывает излучение фотона.
На Эйнштейна произвела очень сильное впечатление блестящая интуиция Бора, выдвинувшего свои постулаты задолго до того, как они могли быть выведены сколько-нибудь строгим образом из более общих допущений, и исходившего из крайне отрывочных и, как казалось, не связанных друг с другом экспериментальных данных. Вплоть до середины двадцатых годов идея квантования излучения и существования квантов света представлялась крайне зыбкой почвой для развития физики. Классические основы физики были подорваны этой идеей, но на смену им еще не пришли новые фундаментальные законы механики и электродинамики.
"Это было так, - вспоминает Эйнштейн, - точно из-под ног ушла земля и нигде не было видно твердой почвы, на которой можно было бы строить. Мне всегда казалось чудом, что этой колеблющейся и полной противоречий основы оказалось достаточно, чтобы позволить Бору - человеку с гениальной интуицией и тонким чутьем - найти главнейшие законы спектральных линий и электронных оболочек атомов, включая их значение для химии. Это кажется мне чудом и теперь. Это наивысшая музыкальность в области мысли" "Наивысшая музыкальность" - это интуиция, связывающая внешнее оправдание с еще не достигнутым внутренним совершенством. Теория Бора, его парадоксальные постулаты о движении электронов по орбитам без излучения были примером подобной интуиции.
Понимание этой интуиции, оценка, которую Эйнштейн дал в те годы теории Бора, проливают свет на самые основные черты и стиль эйнштейновской мысли. Симпатии Эйнштейна отнюдь не принадлежали новой теории, ее характер противоречил тому, что Эйнштейн считал идеалом физики. В 1961 г. в Москве, в Институте физических проблем, Нильс Бор вспоминал первую реакцию Эйнштейна на боровскую модель атома. Эйнштейн сказал: "Что же, все это не так далеко от того, к чему мог бы прийти и я. Но если все это правильно, то здесь - конец физики"
Даже в устах Эйнштейна эта реплика поражает своей емкостью - обилием, общностью и глубиной содержащихся в ней мыслей: "Все это не так далеко от того, к чему мог бы прийти и я". Квантовая теория подвела физику к новой картине движения электронов в атоме. Картина эта оказалась парадоксальной. Эйнштейн увидел или интуитивно почувствовал, что объяснение парадоксальных постулатов Бора приведет к еще более общим парадоксам, что они сломают или ограничат ту идеальную, стройную и рациональную картину мира, которая просвечивала через строки философских трактатов Декарта и Спинозы, получила мощную опору (но вместе с ней чуждые такой картине абсолюты) в механике Ньютона и в конце концов приобрела гармоничную форму в теории относительности Эйнштейна. Разработка такой картины была для Эйнштейна сущностью физики. Поэтому он говорил о теории Бора: "Если все это правильно, то здесь - конец физики". В годы, когда модель атома Бора обсуждали с самых различных сторон (например, со стороны ее применимости к атомам, более сложным, чем атом водорода), Эйнштейн увидел в новой теории гораздо более общую и глубокую черту - крушение или по крайней мере ограничение того идеала, который в глазах творца теории относительности был опорой самого существования физики.
Бора, напротив, в теории фотонов и в его собственных конструкциях привлекала именно эта тенденция, нарушающая строгие каноны классического идеала. Его интуиция непосредственно вела не к разрушению классического идеала, а, если можно так выразиться, к смягчению и размыванию тех очертаний, в которых он был воплощен. Бора недаром называют мастером полутени - "Рембрандтом физики", имея, впрочем, в виду позднейшие идеи, размывавшие строгий и точный рисунок классической пауки. Можно было сопоставить Бора и с теми художниками начала XIX столетия, которые вслед за Гойей отказались от унаследованного от двух прошлых столетий идеала ясности в живописи.
В двадцатые годы постулаты Бора - существование дискретных разрешенных орбит и отсутствие излучения у движущихся по таким орбитам электронов - перестали считаться парадоксальными. Была создана новая общая теория, в свете которой постулаты получили рациональное объяснение. Зато самая теория была более парадоксальной, чем все ранее известное науке. Исходным пунктом этой новой конструкции оказалась не дуалистическая - волновая и вместе с тем корпускулярная - природа света, а противоречивая в таком же смысле природа электрона.
В двадцатые годы кризис квантовой физики, выразившийся в длительных и весьма мучительных поисках более общей теории, из которой бы вытекала модель атома Бора, закончился серией открытий, начавших новую эпоху в физике. В 1923-1924 гг. Луи де Бройль ввел в физику совершенно новое понятие волн материи. Движение материальной частицы - электрона - связано с неким волновым процессом. Электрон может обращаться по такой орбите, на которой укладывается целое число воли. Это и есть "разрешенная" боровская орбита. Движение частицы подчинено законам распространения волн. Так появилась волновая механика. Эрвин Шредингер в 1925 г. написал уравнение, позволяющее найти амплитуду некоторых колебаний - волновую функцию. Решение уравнения дает дискретный ряд значений энергии. Эти значения указывают энергию атома в разных состояниях, соответствующих движению электронов на определенных орбитах.
Что же такое волновая функция? Каков физический смысл величины, колебания которой определяют поведение электрона?
Ответ был дан Максом Борном: речь идет о вероятности встречи с электроном. Если мы вычислим значение волновой функции для определенной точки и для определенного момента, то это значение (вернее, квадрат его абсолютной величины) будет мерой вероятности нахождения электрона в данной точке в данный момент.
Макс Борн и Паскуаль Иордан сопоставили интенсивность волн де Бройля (чисто волновое представление) и среднее число электронов в единице объема пространства (чисто корпускулярное представление). Связь волнового представления с корпускулярным получает при таком сопоставлепии следующий вид.
Мы говорили о среднем числе электронов в данном объеме, среднем для большого числа подсчетов. Подобным же образом можно сказать, что при бросании монеты на каждые десять бросаний в среднем выходит пять выпадений стороны с гербом. Это среднее значение соответствует вероятности: вероятность выпадения герба, т.е. вероятность увидеть на монете герб после каждого ее бросания, равна половине, следовательно, число выпадений герба и среднем будет соответствовать половине бросаний монеты.
Борн и Иордан предположили, что интенсивность волн де Бройля определяет среднее число электронов. Но это среднее число зависит от вероятности пребывания каждого электрона внутри рассматриваемого объема. Значит, интенсивность волн, определяющая среднее число электронов, и есть не что иное, как вероятность пребывания электрона в данном объеме. Когда мы говорим о волнах де Бройля и ограничиваемся волновым представлением, все обстоит благополучно: уравнение Шредингера с полной точностью определяет интенсивность волн в каждой точке в каждый момент. Но когда мы переходим к корпускулярному представлению и вспоминаем о существовании электронов как отдельных корпускул, уравнение Шредингера определяет не самый факт, не самый результат проверки, а только его вероятность.
Интенсивность волн определяется амплитудой колебаний. Но в среднем амплитуда равна нулю: отклонения в одну сторону (со знаком плюс) так же часты, как и отклонения в другую сторону (со знаком минус); на поверхности волнующегося моря гребни уравновешиваются впадинами. Чтобы охарактеризовать интенсивность колебаний, берут квадрат амплитуды; тогда значения со знаком минус становятся положительными (квадрат отрицательной величины - положительная величина) и в среднем уже не получается нулевого значения. Поэтому мерой интенсивности волн де Бройля является квадрат абсолютной величины амплитуды волновой функции. Он измеряет вероятность встречи с электроном в заданном месте в заданное время. Эта вероятность и определяется уравнением Шредингера, позволяющим найти интенсивность волн де Бройля в заданной точке в заданный момент.
Таким образом, квантовая механика, появившаяся в 1925-1926 гг., оперирует закономерностями, которые определяют, вообще говоря, не движение частицы - ее положение и скорость в каждый момент, а лишь вероятность положения и вероятность скорости. Чем точнее определены координаты частицы в данный момент, тем менее точно может быть определена скорость, и, наоборот, чем точнее определена скорость, тем менее точно определяются координаты, Такое утверждение называется соотношением неопределенности. Его нашел Вернер Гейзенберг в 1927 г., и оно уже упоминалось в этой книге.
Соотношение неопределенности иллюстрируют некоторыми мысленными экспериментами, например прохождением частицы через отверстие в диафрагме. Пусть электрон в заданный момент проходит через отверстие в диафрагме, которая остается при этом неподвижной. Такое прохождение позволяет зарегистрировать положение электрона в заданный момент. Чем меньше отверстие, тем с большей точностью определено для данного момента положение электрона. Возможность такого определения является основой физической содержательности понятия "положение" применительно к электрону. Но описанный эксперимент исключает возможность точного определения скорости электрона в заданный момент. Движение электрона связано с распространением волн де Бройля. Проходя через узкое отверстие диафрагмы и взаимодействуя с краями отверстия, волны де Бройля изменяют свое направление, а следовательно, при прохождении электрона через отверстие меняется и скорость электрона - тем больше, чем уже отверстие, т.е. чем точнее определено положение электрона. Если мы захотим точнее определить скорость электрона, нам придется менее точно определить ого положение. Поэтому понятия одновременно с неограниченной точностью определенных положения и скорости электрона не имеют физического смысла. Если учитывать это соотношение и соответственно не требовать неограниченной точности, можно применить к электрону классические понятия положения и скорости.
Мы не можем с полной достоверностью приписать электрону одновременно определенное положение и определенную скорость. Но мы можем приписать ему вероятность того или иного положения или той или иной скорости для каждого момента времени. Такая вероятность определяется уравнением Шредингера.
Закономерности, которые определяют не события, а только их вероятность, - это статистические закономерности. Они ограничили в свое время лапласовский детерминизм - представление о том, что координаты и скорости всех частиц в данный момент однозначно определяют состояние Вселенной в каждый последующий момент и все грядущие события ее истории. Статистические закономерности термодинамики ограничили лапласовский детерминизм сверху. Теперь он оказался ограниченным снизу: движения частиц не подчиняются динамическим закономерностям, состояние движения частицы в данный момент времени определяет лишь вероятность тех или иных координат либо тех или иных скоростей в последующие моменты.
Такая точка зрения вызывала возражения со стороны ряда крупнейших физиков-теоретиков, которых Макс Борн назвал впоследствии "ворчунами". Первая широкая дискуссия развернулась на Сольвеевском конгрессе в 1927 г. Среди "ворчунов" наиболее активным и глубоким критиком квантовой механики (вернее, ее вероятностного понимания) был Эйнштейн. На Сольвеевском конгрессе и позже в печати Эйнштейн доказывал, что соотношение неопределенности не дает полного представления о физической реальности. Нильс Бор, Вернер Гейзенберг, Макс Борн и другие парировали удары, наносимые утверждению о статистических закономерностях как об исходных закономерностях мира. Дискуссия осложнялась попытками философов-позитивистов представить переход от динамической формы детерминизма к статистической его форме в квантовой механике как отказ от какого бы то ни было детерминизма вообще, как признание индетерминизма в природе.
Заметим, что идея "волн вероятности" принадлежала в некоторой мере самому Эйнштейну. В своей теории квантов света он но существу соединил волновое и корпускулярное представление о свете. Свет - это волны, обладающие некоторой энергией, причем в единичном объеме пространства содержится определенное количество энергии световых волн; пространство, которое проходит световой луч, характеризуется известной плотностью энергии электромагнитных волн. Но свет - это частицы, фотоны. В корпускулярном представлении пространство, через которое проходит луч, характеризуется средней плотностью фотонов. Значит, средняя плотность фотонов (пропорциональная вероятности встречи с фотоном: чем вероятнее встреча, тем больше фотонов мы встретим) означает - при переходе к волновому представлению - плотность энергии, т.е. интенсивность колебаний электромагнитного поля. Эти колебания, распространяясь в пространстве, образуя электромагнитные волны, определяют вероятность встречи с фотоном. Подобное представление логически вытекало из учения Эйнштейна о фотонах. В квантовой механике, созданной в 1925-1926 гг., речь первоначально шла об электроне. Вероятность встречи с ним, вероятность его пребывания в данном объеме определяются уже не электромагнитными волнами, а "волнами материи", о которых говорил Луи де Бройль и которые Макс Бори рассматривал как волны вероятности.
Ту роль, которую при определении движения электрона играет волновое уравнение Шредингера (с его помощью можно определить вероятность местонахождения электрона), в оптике играет волновое уравнение, позволяющее определить движение фотонов. В этом смысле в эйнштейновской теории фотонов уже содержались основные коллизии квантовой механики. Свет состоит из частиц. С другой стороны, абсолютно достоверные опыты убеждают в том, что свет - это электромагнитные волны. Более того, вывод Эйнштейна об интенсивности электромагнитных волн, пропорциональной плотности фотонов, наталкивает на ту мысль, что интенсивность электромагнитной волны соответствует вероятности нахождения фотона в данной точке, на мысль об электромагнитных волнах как волнах вероятности встречи с фотоном. Эйнштейн не соглашался с представлением о волнах вероятности, т.е. о некоторой закономерности, определяющей лишь вероятность фактов, как о наиболее общей закономерности микромира. Но именно к этому выводу вела и привела в конце концов выдвинутая им теория.
Сейчас, ретроспективно оценивая идею фотонов, мы находим в ней еще более радикальный отход от основ классической картины мира. Эйнштейн в отличие от Планка говорил о дискретности энергии электромагнитного поля не только при его излучении и поглощении, но и между этими процессами. Поле по своей природе дискретно ("пиво не только продается пинтовыми бутылками, но и состоит из пинтовых неделимых порций, находясь в бочонке"). Довольно естественным обобщением этой мысли служит представление о том, что все поля дискретны, что мы можем описывать поле, действующее на частицу, с точностью до некоторой далее неделимой величины. Классическая физика исходит из того, что поведение частиц определяется их взаимодействием, иначе говоря, некоторыми силовыми полями, порождаемыми частицами и воздействующими на них. Если очистить классическую механику от иных воздействующих на частицы сил (например, сил инерции, вызванных не взаимодействием тел, а абсолютным ускорением системы), т.е. приблизить ее к "классическому идеалу", то мы получим Вселенную, в которой взаимодействия частиц определяют все, что в ней происходит.
Если эти взаимодействия нельзя определить с неограниченной точностью, то в указанной идеальной картине окажутся как бы маленькие пятна. "Классический идеал" ограничен некоторыми наименьшими значениями энергии, наименьшими силами, определяющими движения частиц. Таким образом, теория фотонов оказалась бомбой замедленного действия, направленной против "классического идеала". Она угрожала этому идеалу только при очень малых "порциях" поля. Но этого было достаточно, чтобы лишить былого абсолютного доверия картину, в которой все определялось с какой угодно точностью, так что даже бесконечно малое изменение состояния частицы можно было объяснить некоторым действием поля.
Подобная связь между бесконечно малым изменением состояния движения частицы и значениями напряженности поля - краеугольный камень физики, причем не только физики, основанной на законах Ньютона, но и физики, реформированной Эйнштейном. Эйнштейн считал взаимодействие частиц ответственным за все, что происходит в природе. Указанная связь выражается в уравнениях, связывающих переменные поля с бесконечно малыми изменениями состояния движения частицы. Такие уравнения называются дифференциальными уравнениями. Примером их служит уравнение движения частицы в силовом поле. Бесконечно малое изменение скорости частицы определяется напряженностью силового поля.
До появления квантовых концепций думали, что, какое бы малое изменение состояния движения частицы (например, ее ускорения в силовом поле) мы ни взяли, все равно закон, связывающий поведение частицы с действием других частиц, т.е. с полем, будет действовать неуклонно. Оказывается, порции энергии поля не могут быть меньше определенной минимальной величины и увеличиваться она может только определенными конечными добавками. Раньше знали о дискретности материи, об атомах - наименьших частицах вещества. Теперь выяснилось, что взаимодействие тел, с одной стороны, и изменения их состояния движения, с другой, дискретны и теряют свою однозначную связь, когда речь идет об очень малых величинах, меньших, чем предельные минимальные значения переменных, выражающих энергию поля и изменения состояния движения.
Сравним две картины. Одна из них написана красками, смешанными на палитре. Краски, положенные на холст, дают непрерывный переход от одного цвета к другому. Другая картина написана чистыми, не смешанными красками и состоит из отдельных небольших пятен определенных цветов. Так писали некоторые импрессионисты; они думали, что смешение красок не на палитре, а в глазу, дает более точное изображение натуры. Классическая картина мира соответствует пейзажу, написанному в старой манере, квантовая - соответствует указанному только что множеству отдельных пятен без непрерывных переходов. Какая картина отображает действительность?
В доквантовой физике ответ был различным в зависимости от того, шла ли речь о веществе или же о движении. Вещество признавалось дискретным, и картина вещества в конце концов должна была строиться из отдельных мазков, соответствующих атомам. Но картина движения была непрерывной, закон движения связывал бесконечно малые приращения скорости движения с определенными значениями сил.
Квантовая механика на основе множества непререкаемых фактов пришла к дискретной картине поля и движения.
Все эти выводы можно было сделать уже из самой идеи фотонов. Но в 1917 г. Эйнштейн сделал еще один шаг по направлению к статистико-вероятностпой концепции движения частиц. Он вывел из представления о фотонах и модели Бора законы излучения, найденные когда-то Планком. Законы, управляющие излучением атомов, носят статистический характер, они определяют каждый раз вероятность излучения. Излучение волн и излучение частиц (оно подчинено каждый раз воле случая) - вещи, по-видимому, несовместимые, и именно это Эйнштейн рассматривал как уязвимое место своей теории излучения.
"Слабость этой теории, - писал он, - заключается в невозможности связать ее с волновым представлением. Далее, эта теория отдает на волю случая время и направление элементарных процессов..."
Действительно, элементарный процесс, т.е. отдельный акт излучения фотона при переходе электрона с одной боровской орбиты на другую, подчинен случаю, и только при большом числе излученных фотонов результат будет соответствовать вероятности, которая определена статистическим законом.
Указанные обстоятельства - отсутствие связи с волновым представлением и случайный характер излучения - были в глазах Эйнштейна симптомами большой угрозы, нависшей над самим существованием физики. Бора они не смущали. Он знал, что свет ведет себя как частицы в явлениях фотоэффекта, например в фотоэлементах, где фотоны срывают электроны с поверхности металлической пластинки. Бор знал также, что свет ведет себя как волны, проходя, например, через узкие отверстия или решетки, где имеет место дифракция - изменение направления волн, огибающих края отверстий. Отсюда - неизбежность нового взгляда на свет, как бы далеко ни уводил этот взгляд.
Бор вспоминает о своей первой встрече с Эйнштейном и первом споре о характере законов, управляющих поведением фотонов.
"Когда в 1920 г. при моем посещении Берлина я в первый раз встретился с Эйнштейном - что было для меня великим событием, - эти фундаментальные вопросы и были темой наших разговоров. Обсуждения, к которым я потом часто мысленно возвращался, добавили к моему восхищению Эйнштейном еще и глубокое впечатление от его непредвзятой научной позиции. Его пристрастие к таким красочным выражениям, как "призрачные поля, управляющие фотонами", не означало, конечно, что он склонен к мистицизму, но свидетельствовало о глубоком юморе, скрытом в его проницательных замечаниях. И все-таки между нами оставалось некоторое расхождение в отношении нашей точки зрения и наших видов на будущее. При его мастерстве согласовывать, казалось бы, противоречащие друг другу факты, не отказываясь от непрерывности и причинности, Эйнштейн, быть может, меньше, чем кто-либо другой, был склонен отбросить эти идеалы, - меньше, чем кто-либо, кому такой отказ представлялся единственной возможностью согласовать многообразный материал из области атомных явлений, накапливавшийся день ото дня при исследовании этой новой отрасли знаний"
В 1961 г. Бор подробнее рассказал о первых спорах с Эйнштейном. Когда Эйнштейн поделился своими сом нениями насчет необходимости расстаться с идеалами не прерывности и причинности, Бор ответил:
"Чего вы, собственно, хотите достичь? Вы - человек, который сам ввел в науку понятие о свете как о частицах! Если вас так беспокоит ситуация, сложившаяся в физике, когда природу света можно толковать двояко, ну что же, обратитесь к правительству Германии с просьбой запретить пользоваться фотоэлементами, если вы считаете, что свет - это волны, или запретить употреблять дифракционные решетки, если свет - частицы".
"Аргументация моя, - прибавляет Бор, - как видите, была не слишком убедительна и строга. Впрочем, для того времени это достаточно характерно..."
В наши дни становится ясным, что позиция Эйнштейна выражала отнюдь не простую приверженность к старым позициям физики, а скорее догадку о неокончательном характере новых позиций, о возможности еще более общих и еще более точных исходных принципов физики.
Бор продолжает свои воспоминания:
"Эйнштейн с горечью заметил:
- Видите, как получается: приходит ко мне такой человек, как вы, встречаются, казалось бы, два единомышленника, а мы никак не можем найти общего языка. Может быть, стоило бы нам, физикам, договориться о каких-либо общих основаниях, о чем-то общем, что мы твердо будем считать положительным, и уже затем переходить к дискуссиям?
И снова я запальчиво возражал:
- Нет, никогда! Я счел бы величайшим предательством со своей стороны, если бы, начиная работу в совершенно новой области знаний, позволил себе прийти к какому-то предвзятому соглашению"
Здесь пути разошлись. Эйнштейн продолжал думать об общих основаниях физики, из которых вытекали бы частные проблемы. Он искал эти основания по-прежнему в классическом идеале науки. Бора влекла романтика новых закономерностей бытия, не укладывающихся с абсолютной точностью в рамки классической гармонии.
В реплике Эйнштейна "Если все это правильно, то здесь - конец физики" есть одна мысль, может быть, самая поразительная. Эйнштейн думает, что точка зрения Бора - конец той физики, которая до сих пор существовала, по не исключает точки зрения Бора, считает ее в принципе допустимой ("если все это правильно..."). В этом выражается смелость мысли, дошедшей до сомнений в стержневой идее собственного творчества и в стержневой идее существовавшей до сих пор науки. В этом выражается понимание допустимости, возможности и, более того, красоты ("высшей музыкальности") теории, антипатичной мыслителю, угрожающей его научному идеалу. В последнем счете в такой предельной толерантности выражается исчезновение всего личного вплоть до личного идеала науки перед лицом объективного, внеличного. Эйнштейн был предан классическому идеалу - картине мира, в которой взаимодействия частиц абсолютно точным образом объясняют все происходящее в мире. Но еще больше Эйнштейн был предан объективной истине. Перефразируя Аристотеля, он мог бы сказать: "Ньютон мне дорог, но истина дороже". Разумеется, "Ньютон" был бы в этом случае не символом конкретной ньютоновой механики, а символом классической гармонии, "механики типа ньютоновой"; можно было бы вместо имени Ньютона поставить имя Декарта или Спинозы. Эйнштейн пользовался именем Ньютона как символом классического идеала науки. Он говорил о "программе Ньютона" (все определяется взаимодействием тел) и о "программе Максвелла" (движение тела определено в каждой точке полем, действующим на это тело) как о стержневых программах физики. Но он может уплатить и эту цену за объективное знание. И здесь вспоминаются приведенные в эпиграфе главы "Броуновское движение" слова Роберта Майера (такие реминисценции неизбежны, потому что Эйнштейн - это итог и синтез всего бессмертного, живого, антидогматического, что было в истории науки): "...Природа в ее простой истине является более великой и прекрасной, чем любое создание человеческих рук, чем все иллюзии сотворенного духа".
Вспомним многозначительную фразу Эйнштейна в письме к Соловину: "...Нельзя игнорировать, что тела, с помощью которых мы измеряем предметы, воздействуют на эти предметы", а также вывод: "Если не грешишь против разума, нельзя вообще ни к чему прийти".
Сопоставив ее с репликой по поводу теории Бора, можно прийти к заключению: Эйнштейн не исключал ограничения "классического идеала". Если при этом "исчезает физика", то слово "физика" означает здесь не возможность объективной картины мира вообще, а физику в духе "программы Ньютона" и "программы Максвелла".
Отношение к квантово-статистическим идеям у Эйнштейна было крайне сложным, но в целом оно укладывалось в реплику, о которой вспоминал Бор. Он видел связь этих идей со своими работами, видел в них угрозу физике, ждал разрешения этого кризиса от дальнейших исследований и надеялся найти за кулисами этих законов динамические законы, определяющие не вероятности процессов, а самые процессы так, как это было в классической термодинамике.
Теория до Бройля могла внушить надежду на подобное нестатистическое объяснение. Сейчас ретроспективно мы видим в электромагнитных волнах нечто напоминающее волны вероятности. В первой четверти века, напротив, хотели свести статистические закономерности движения частиц к динамическим - хотя бы к существованию волн, управляющих движением частиц. Аналогия между волнами де Бройля и электромагнитными волнами способствовала восприятию новой теории и вместе с тем наталкивала мысль на признание реальности "волн материи". Фотоны как-то связаны с электромагнитными волнами, как именно - об этом трудно было что-либо сказать. Но предполагали, что электромагнитные волны представляют собой изменения напряженности "реального" поля. Волны де Бройля, по-видимому, тоже должны считаться распространяющимися колебаниями некоторого "реального" поля. Но эти надежды и соответствующие гипотезы быстро уступили место идее "волн вероятности".
Отношение Эйнштейна к этой идее было, как уже сказано, очень сложным. Позитивистские выводы, представление об индетерминизме он полностью отбрасывал, и с этой стороны его критические аргументы были неопровержимы. Собственно физические соображения и мысленные эксперименты, противопоставленные физическим построениям Гейзенберга, Бора, Борна и других сторонников "волн вероятности", встретили с их стороны веские контраргументы. Общая мысль, вернее интуитивная догадка о теории, более общей и точной, чем квантовая механика, только сейчас может быть воплощена в сравнительно конкретные формы и получить правильную оценку. На этой стороне дела мы и остановимся.
В 1932 г. в Берлине Эйнштейн встретил Филиппа Франка, который защищал официальную статистическую версию квантовой механики. Франк рассказывает о споре с Эйнштейном.
"В физике, - говорил Эйнштейн, - возникла новая мода. С помощью виртуозно сформулированных мысленных экспериментов доказывают, что некоторые физические величины не могут быть измерены или, точнее, что их поведение определено законами природы таким образом, что они ускользают от всяких попыток измерения. Отсюда заключают, что было бы бессмысленно сохранять эти величины в физическом лексиконе. Такое сохранение было бы чистой метафизикой"
После того как Эйнштейн высказал свое отрицательное отношение к этой концепции, Франк попробовал отождествить ее с исходной идеей теории относительности. Последняя, анализируя, например, понятие "абсолютная одновременность", отказывает ему в праве на существование на том основании, что реальные и мысленные эксперименты демонстрируют невозможность синхронизировать события, рассматриваемые в различных, движущихся одна относительно другой системах отсчета. Значит, заключал Франк, понятия, отвергнутые теорией относительности, отвергнуты потому, что они ненаблюдаемы. Он так и сказал Эйнштейну: "Но ведь мода, о которой вы говорите, изобретена вами же в 1905 г.".
"Хорошая шутка не должна слишком часто повторяться", - ответил Эйнштейн. Далее он разъяснил, что теория относительности описывает объективные процессы, реальную материальную субстанцию, устанавливает связь между различными способами описания одной и той же реальности, не имеет ничего общего с позитивизмом я далека от появившейся сейчас "моды".
Позитивистские выводы, сделанные из квантово-статистического характера закономерностей микромира, в действительности не вытекают из квантовой механики; квантовая механика - это одно, а ее гносеологическая трактовка, о которой говорил Эйнштейн, - другое. Но в квантовой механике мы встречаем закономерный виток познания, абсолютизация которого ведет к указанной гносеологической трактовке. Сейчас, с позиций физики семидесятых годов, мы видим этот виток, он связан не только с отходом от классических идей, но и с недостаточной радикальностью такого отхода в квантовой механике, созданной в двадцатые годы.
Это требует разъяснения - пока предварительного, более подробное придется немного отложить. Сравним теорию относительности с квантовой механикой. В первой такие понятия, как "движение относительно эфира", "абсолютная одновременность" и т.д., признаны не допускающими экспериментальной регистрации. Но с этой невозможностью экспериментальной регистрации мы встречались и в теории Лоренца. Сокращение продольных размеров тел делало невозможным регистрацию движения по отношению к эфиру при помощи опытов - реальных или мысленных, аналогичных опыту Майкельсона.
Теория относительности пошла дальше. Она отрицает субстанциальное, независимое от каких-либо опытов существование движения относительно эфира и связанные с таким движением свойства мира. При отождествлении наблюдаемости и реальности различие между концепцией Лоренца и концепцией Эйнштейна исчезает. Признание объективной реальности делает это различие крайне существенным. Теория относительности Эйнштейна радикально рвет с движением в эфире и соответствующими классическими понятиями, отрицая их объективный смысл.
Взглянем с этой точки зрения на квантовую механику. Она ограничивает применимость таких понятий, как "положение" и "скорость" электрона, определенными условиями. Но квантовую механику нельзя изложить без этих классических понятий, она теряет без них смысл. Она не отбрасывает понятия положения и скорости частицы с такой категоричностью, с какой теория относительности отбросила классические понятия абсолютного пространства, времени и движения. Это не значит, что теория относительности дальше ушла от классической физики, чем квантовая механика. Напротив, последняя ушла дальше. Квантовая механика не с полной категоричностью отказалась от понятий скорости и положения частицы, но эти понятия играли в классической физике гораздо более фундаментальную роль, чем ньютоновы абсолюты, по существу противоречившие классическому идеалу. Радикализация квантовой механики была бы не очищением классического идеала, а дальнейшим отказом от него.
Квантовая механика первоначально лишь ограничила классический идеал. Ценой неопределенности скорости можно со сколь угодно большой точностью определить положение частицы и, наоборот, ценой неопределенности положения можно сколь угодно точно определить скорость. Но уже в начале тридцатых годов было установлено, что в очень малых областях нельзя точно определить положение частицы даже в том случае, когда ее скорость остается неопределенной. Далее были обнаружены процессы, которые радикальнее, чем это было известно раньше, устраняют классические понятия из ультрамикроскопической картины.
Указанное направление физической мысли выходило за первоначальные рамки квантовой механики. Нильс Бор отчетливо высказал основную посылку последней на международном конгрессе по физике в Комо в 1927 г. В 1949 г., излагая мысль этого выступления на конгрессе, Бор писал об изучении микромира:
"Решающим моментом является признание положения, что, как бы далеко ни выходили явления за рамки классического физического объяснения, все опытные данные должны описываться при помощи классических понятий" Эта формула очень важна, так как она показывает позитивно-классическую сторону квантовой механики. Последняя утверждает, что классические понятия применимы ко всем рассматриваемым физическим явлениям при условии ограничения точности этих понятий.
Если существуют процессы, к которым классические понятия труднее применить, то они заставят ограничить нерелятивистскую квантовую механику, сделать ее теорией, описывающей лишь часть реальных процессов. Но в 1927 г. такие процессы были неизвестны. Поэтому критика квантовой механики была направлена не на "охранительную" (по отношению к классическим понятиям) сторону квантовой механики, а на тезис об условиях такого применения, и критика велась с позиций безусловного применения классических понятий, с позиций, допускающих "скрытые параметры", которые определяют точным образом события в микромире и могут быть без всяких условий выражены с помощью классических понятий.
На конгрессе в Комо Эйнштейна не было. Но в том же году в Брюсселе состоялся 5-й Сольвеевский конгресс. Здесь Эйнштейн выступил со своими возражениями Бору и другим защитникам новой теории. Спор Эйнштейна с Бором продолжался и на следующем Сольвеевском конгрессе в 1930 г. Эйнштейн придумывал все новые мысленные эксперименты, все новые комбинации диафрагм, ящиков, весов и т.д., которые могли бы убедить Бора. Последний показывал, что эти конструкции не противоречат постулатам квантовой механики. Кроме публичных дискуссий спор Эйнштейна с Бором продолжался при каждой личной встрече. Постоянным участником этих встреч был Пауль Эренфест. Его участие в спорах было очень плодотворным, он был как бы посредником, помогавшим своими разъяснениями обеим сторонам.
В более общей форме - без мысленных конструкций - критика квантовой механики была изложена Эйнштейном и его сотрудниками Подольским и Розеном в 1935 г. в статье "Может ли квантовомеханическое описание физической реальности рассматриваться как полное" В ответ Бор написал статью под тем же названием В споре все больше определялось основное расхождение между господствующим пониманием квантовой механики а позицией Эйнштейна.
Философские позиции Эйнштейна были при этом весьма отчетливыми. В 1938 г. в письме к Соловину Эйнштейн высказал следующую характеристику связи между затруднениями квантовой механики и позитивизмом. Он пишет о "вредном влиянии субъективно-позитивистских взглядов" и прибавляет:
"Понимание природы как объективной реальности считают устаревшим предрассудком, и квантовые теоретики из нужды делают добродетель. Люди больше подвержены внушению, чем лошади, поэтому у них в каждый период - своя мода, и большинство не знает источника этой тирании"
"Из нужды делают добродетель..." В данном случае "нужда" состояла в настоятельной необходимости применить в теории микромира классические понятия, описывать движение элементарной частицы по аналогии с классической частицей, ограничив такую аналогию неопределенностью сопряженных переменных и указанием, вообще говоря, лишь вероятности точных значений этих переменных для каждого момента и для каждой точки. Множество фактов, доказывающих волновую природу частиц, и множество фактов, доказывающих их корпускулярную природу, требуют такого ограничения классических понятий. В этом и состоит "нужда".
Для Эйнштейна "нужда", т.е., по его терминологии, "внешнее оправдание", еще не решает дела. Необходимо вывести концепцию из общих физических принципов. Такая тенденция существовала в интерпретациях квантовой механики. Соотношение неопределенности и статистический характер квантовомеханических закономерностей выводили из априорной невозможности познания объективной реальности, из неотделимости объекта познания от его субъекта, из границ причинного объяснения мира. Нужда стала добродетелью. Официальная версия квантовой механики перестала быть результатом "нужды" - некоторым предварительным, подлежащим дальнейшему развитию объяснением определенного круга наблюдений. Она рассматривалась как выражение раз навсегда данных свойств познания - результатом "добродетели". Но для Эйнштейна границы причинного объяснения мира, индетерминизм, отрицание объективной реальности были разрывом с непоколебимыми проверенными всем экспериментом и всей практикой устоями какой бы то ни было науки. Он искал иного "внутреннего совершенства" квантовой механики - возможности вывести ее соотношения из более общей картины объективной реальности, из более общего понятия причинности.
Не следует схематизировать взгляды Эйнштейна на квантовую механику и приписывать этим взглядам последовательный и четкий характер. Вообще говоря, Эйнштейн критиковал квантовую механику с позиций более общей и радикальной неклассической теории, а не с классических позиций. Но классические позиции могли быть сформулированы в явной форме - классическая физика имела четкие контуры. Напротив, более радикальная и общая неклассическая теория не существовала (да и теперь, строго говоря, не существует), и критика квантовой механики "слева" могла вестись лишь в самой неопределенной форме. У Эйнштейна, в его выступлениях по поводу квантовой механики, классические мотивы переплетались с критикой "слева". Он иногда приближался к сторонникам классической интерпретации, иногда явно тянул в сторону более радикальной теории. Второе направление, как бы неявно оно ни выражалось, представляется более характерным для Эйнштейна. В 1928 г. Эйнштейн послал Шредингеру письмо, в котором в общем соглашался с шредингеровской классической тенденцией, с шредингеровским отрицанием корпускулярно-волнового дуализма. Эйнштейн не был согласен с союзом "или", соединяющим волновую характеристику (например, частоту колебаний v) и корпускулярную характеристику (например, энергию частицы Е).
В отличие от Шредингера, определявшего волны де Бройля как первичный процесс, и в отличие от Борна и других физиков, рассматривавших интенсивность колебаний как меру вероятности, Эйнштейн видел исходное понятие в энергии частицы, а волновой процесс с частотой колебаний v он считал условным понятием. Но главное, что здесь нужно подчеркнуть, - это критика представления о квантовой механике как о чем-то завершенном. Если концепцию Гейзенберга и Бора будут считать последним и окончательным ответом на вопрос о движении микрочастицы, то эта концепция станет чем-то абсолютным, чем-то сходным с догматом, чем-то исключающим дальнейшие поиски.
Эйнштейн писал Шредингеру:
"Успокаивающая философия (или религия?) Гейзенберга - Бора помогает верующему обрести подушку для спокойного сна. Его нелегко согнать с подушки. Пусть отлеживается. Но эта религия чертовски слабо действует на меня, и я, несмотря на все, говорю: Не "Е и v", а "E или v". И именно не v, a E - эта величина в конечном счете и обладает реальностью. Но никаких математических изменений я из этого не могу вывести. Моя мозговая шарманка уж очень выдохлась..."
Эйнштейн видел, что статисгико-вероятпостное понимание квантовой механики не противоречит опыту. Но для него эта констатация не снимает возможности "точного детерминизма" применительно к микромиру. Эйнштейн думал, что можно представить себе картину элементарных процессов, ход которых определяется точным образом. Принципиальная представимость таких процессов и является спорным пунктом в теоретической физике.
В 1950 г. Эйнштейн писал Соловину:
"С точки зрения непосредственного опыта точный детерминизм не существует. В этом вопросе - полное согласие. Вопрос состоит в том, должно ли быть описание природы детерминистическим описанием или от этого можно отказаться. Далее следует специфическая проблема: можно ли для индивидуального объекта получить представимый образ, в котором полностью исключена статистическая закономерность. Только в этом и состоит различие точек зрения"
Здесь мы снова видим, что представление о нестатистических закономерностях поведения элементарных частиц оставалось у Эйнштейна интуитивным и никогда не выражалось в какой-либо определенной гипотезе. Эйнштейн не ждал реабилитации доквантовой физики. Но, как уже говорилось, критика квантовой механики с неклассических позиций не могла в то время облечься в конкретный образ и оставалась неопределенной и в целом интуитивной тенденцией мысли. Такой характер критики квантовой механики можно увидеть и в большом числе других выступлений Эйнштейна.
В 1936 г. Эйнштейн написал статью "Физика и реальность" в которой говорит, что мысль о полноте квантовомеханического описания не приводит к противоречиям, но настолько противоречит его научному инстинкту, что он не может отказаться от более полной концепции. Отвечая на эту статью в обзоре "Дискуссии с Эйнштейном", Бор снова высказывает, в несколько иной форме, основную идею квантовой механики: в ней "мы имеем дело не с произвольным отказом от детального анализа атомных явлений, но с признанием того, что такой анализ принципиально исключается"
Под "более точным анализом" здесь подразумевается неограниченно точное определение динамических переменных, например положения и скорости. Квантовая механика ограничивает точность их определения условием: чем точнее определена одна переменная, том менее точно определена другая. Вопрос, однако, не решен, если ому придать более радикальный смысл: нет ли принципиального предела для какого бы то ни было применения понятий положения и скорости в микроскопическом или ультрамикроскопическом мире?
В 1937 г. Бор был в Принстоне, но на этот раз спор с Эйнштейном велся в очень своеобразной форме: они обсуждали, к какой концепции присоединился бы Спиноза, если бы он мог наблюдать развитие квантовой механики. Такой аспект очень характерен и для Эйнштейна, и для Бора. Оба склонны поднимать физические проблемы современности до уровня основных вопросов, по-разному ставившихся и решавшихся в течение всего существования современной науки. Для Эйнштейна мировоззрение Спинозы было наиболее общим выражением идеи единства, детерминированности, объективности и материальности мира. Эта идея у него воплотилась в критерии "внутреннего совершенства" и "внешнего оправдания" физических теорий. Он применял названные критерии к квантовой механике и считал, что она не удовлетворяет им. Сейчас мы видим, что квантовая механика, о которой шла речь, обнаружила свою недостаточность только в результате открытия принципиально новых явлений. Такая недостаточность может оказаться свойственной всякой теории.
В статье Эйнштейна, Подольского и Розена говорится: "...Каждый элемент физической реальности должен иметь отражение в физической теории". Но в этом случае физическая теория дает исчерпывающее описание реальности и полнота описания приобретает абсолютный смысл: теория согласно известной судебно-процессуальной формуле говорит "правду, только правду и всю правду". Но в автобиографии 1949 г. Эйнштейн упоминает о критериях выбора относительно "внутренне совершенной" и "внешне оправданной" теории. При такой постановке вопроса указанные критерии ведут науку вперед по бесконечному пути приближения к истине и не гарантируют "всей правды" [14]. В высказываниях Эйнштейна о квантовой механике иногда имеется в виду абсолютная полнота описания физической реальности. Теперь, когда мы можем рассматривать квантовую механику с позиций более общей и точной теории, она оказывается относительно недостаточным описанием физической реальности. Но эта недостаточность оказывается свойственной каждой механике, в которой исходными процессами являются движения тождественных себе частиц.
Эта общая, свойственная каждой механике "типа ньютоновой механики" недостаточность стала явственной только сейчас. Только сейчас мы можем наметить, хотя бы гипотетически, контуры новой картины мира, более общей и точной, чем механика указанного типа. До того собственно физические аргументы, обосновывающие недостаточность квантовомеханического объяснения мира, сводились к интуитивному и потому необщезначимому предчувствию новых, более широких концепций. Все это видно из уже процитированного в письме Эйнштейна к Максу Борну.
В этом письме Эйнштейн говорит об "играющем в кости боге" - концепции статистических закономерностей как исходных закономерностей бытия.
"В наших научных взглядах мы оказались антиподами. Ты веришь в играющего в кости бога, а я - в полную закономерность в мире объективно сущего, что я пытаюсь уловить сугубо спекулятивным образом. Я надеюсь, что кто-нибудь найдет более реалистический путь и соответственно более осязаемый фундамент для подобного воззрения, нежели это удалось сделать мне. Большие первоначальные успехи теории квантов не могли меня заставить поверить в лежащую в основе игру в кости"
"Бог не играет в кости!" Мы снова сталкиваемся с "богом", снова в несколько ироническом контексте и снова как с псевдонимом объективного ratio - наиболее общих закономерностей бытия. Эти закономерности не статистические, они определяют не вероятность событий, а сами события. Идея более глубоких и общих закономерностей, действующих за кулисами термодинамики, была, как мы видели, исходной идеей работ Эйнштейна, посвященных броуновскому движению. Эйнштейн понимал - об этом уже шла речь, - что статистические закономерности термодинамики, т.е. законы поведения больших ансамблей, не сводятся к законам перемещения и взаимодействия. Но его интересовала неотделимость высших форм движения от наиболее простых и общих.
Теперь речь шла о статистических закономерностях движения отдельных частиц. Эти закономерности нельзя было объяснить динамическими закономерностями движения каких-то других тел, как это было в термодинамике. Тем не менее Эйнштейн не соглашался считать статистические закономерности исходными.
Попытки уловить универсальные динамические закономерности бытия "сугубо спекулятивным образом" не удовлетворяли Эйнштейна, и он ждал, что в будущем найдут "более осязаемый фундамент для подобного воззрения". Поэтому он не мог высказать Борну какие-либо аргументы общезначимого характера и говорил о субъективной интуиции, заставляющей его верить в универсальную динамическую закономерность мира. В 1947 г. Эйнштейн снова пишет Борну:
"Мою физическую позицию я не могу для тебя обосновать так, чтобы ты ее признал сколько-нибудь разумной. Конечно, я понимаю, что принципиально статистическая точка зрения, необходимость которой впервые ясно осознана была тобой, содержит значительную долю истины. Однако я не могу в нее серьезно верить потому, что эта теория несовместима с основным положением, что физика должна представлять действительность в пространстве и во времени без мистических дальнодействий. В чем я твердо убежден, так это в том, что в конце концов остановятся на теории, в которой закономерно связанными вещами будут не вероятности, но факты, как это и считалось недавно само собой разумеющимся. В обоснование этого убеждения я могу привести не логические основания, а мой мизинец как свидетель, т.е. авторитет, который не внушает доверия за пределами моей кожи"
Несколько позже Эйнштейн снова писал Борну, с которым очень хотел повидаться:
"Мне понятно, что ты видишь во мне старого грешника. Но я так же ясно чувствую, что ты не понимаешь, как я попал на свой одинокий путь. Конечно, ты не согласился бы с моей установкой, но она бы тебя развеселила. Я тоже обрадовался бы возможности со всех сторон ощупать твою позитивистскую философскую платформу. Но, по-видимому, нам не удастся сделать это в нашей жизни"
Когда Борн по просьбе Зелига комментировал это письмо, он написал, что не сочувствует позитивизму и что Эйнштейн был приверженцем классического детерминизма. Последнее требует оговорок.
Эйнштейн не считал статистические закономерности основными закономерностями бытия. Он полагал, что основные закономерности определяют не вероятность событий, а сами события. В письме к Зелигу Эйнштейн говорил, что поле, определяющее события в каждой точке пространства, кажется ему элементарным понятием.
"В моих взглядах на основы физики я расхожусь со всеми моими современниками и поэтому не могу себе позволить выступать от имени теоретической физики. Я не верю в необходимость статистического характера основных законов и вопреки почти общему мнению современников считаю по крайней мере мыслимым, если не достоверным, тезис об элементарном характере понятия поля"
В письме Джемсу Франку Эйнштейн говорил:
"Я еще могу представить, что бог создал мир, в котором нет законов природы, короче говоря, что он создал хаос. Но чтобы статистические законы были окончательными и бог разыгрывал каждый случай в отдельности, - такая мысль мне крайне несимпатична"
В 1948 г. Эйнштейн писал Инфельду о беседе с одним физиком, защищавшим официальную точку зрения на квантовую механику. Эйнштейн говорил, что он был восхищен научной изобретательностью своего собеседника.
"Однако дискуссия с ним очень трудна, ибо разные аргументы имеют в его глазах совершенно другой вес, чем в моих. Мое твердое следование логической простоте и отсутствие доверия к ценности критериев теорий, даже тех, что производят большое впечатление, если речь идет о принципиальных вопросах, для него непонятны. Он находит такого рода позицию обособленной и странной, как все, кто считает, что квантовая теория близка к сути дела"
Одного этого письма достаточно, чтобы понять смысл эйнштейновской "логической простоты". "Логическая простота" представляет онтологическую характеристику бытия, она утверждает существование объективного ratio, объективной детерминированности процессов природы. Но эта детерминированность воплощалась для Эйнштейна в "классическом идеале", очищенном от произвольных постулатов абсолютной одновременности и абсолютного пространства.
Теория в этом отношении шла дальше своего творца.
В эйнштейновском соотношении массы и энергии содержались атомная эра, если говорить о практике, и представление о трансмугациях частиц, если говорить о физической теории. Это не изменило основного направления в творчестве Эйнштейна; основным направлением была разработка теории, в которой исходным понятием оставалось движение тождественных себе тел.
В своих воспоминаниях об Эйнштейне Инфельд пишет:
"Мне было очень больно видеть обособленность Эйнштейна и то, что он стоит как бы вне потока физики. Часто этот величайший, вероятно, физик мира говорил мне в Принстоне: "Физики считают меня старым глупцом, но я убежден, что в будущем развитие физики пойдет в другом направлении, чем до сих пор". Сегодня возражения Эйнштейна против квантовой механики нисколько не потеряли своей силы. Сегодня - мне кажется - он был бы менее одинок в своих воззрениях, чем в 1936 г."
Действительно, в пятидесятые годы, когда Инфельд писал эти строки, и еще более в 60-70-е годы физика все более явственным образом приближалась к пределам той картины мира, которая была создана в XVII - XVIII вв., развивалась в течение XIX в. и получила завершение в нашем столетии. В XVII-XVIII вв. думали, что объяснить мир - это значит нарисовать картину перемещений частиц в пространстве; что картина, в которой указаны положения и скорости всех частиц, будет исчерпывающим объяснением бытия. В XIX в. поняли, что перемещение частиц еще не объясняет сути явлений, существуют сложные процессы, которые останутся не объясненными механическими моделями. В XX в. Эйнштейн показал, что законы перемещения частиц и всех вообще тел природы отличаются от классических законов Ньютона, а квантовая механика разъяснила, что движение частицы - сложный процесс, не допускающий одновременного точного определения положения и скорости частицы. Это было ограничением "классического идеала". Более радикальный отказ от него был подготовлен открытиями в области элементарных частиц и столь характерным для нашего времени обобщением квантовой механики и теории относительности. Но более ясное понимание необходимости такого отказа во многом зависело от того уточнения принципов квантовой механики, которое было результатом споров между Эйнштейном и сторонниками официальной вероятностной интерпретации.
Во-первых, эти споры толкнули Бора и других сторонников официальной концепции к значительному уточнению их позиции. В цитированном уже выступлении в Институте физических проблем Бор после рассказа о первой беседе и первом споре с Эйнштейном говорил о последующих дискуссиях. Отсюда и взяты строки, помещенные в качестве эпиграфа к этой главе. Что имел в виду Бор в своей процитированной там фразе: "На каждом новом этапе Эйнштейн бросал вызов науке, и, не будь этих вызовов, развитие квантовой физики надолго бы затянулось"
Во-вторых, в результате дискуссий была уточнена критическая платформа. Стало выясняться, что для определенного круга процессов квантовая механика не обнаруживает внутренних противоречий. В этом отношении она отличается от механики Ньютона. В последней существовали внутренние противоречия: мгновенное дальнодействие и абсолютное время, а также силы инерции как критерии абсолютного движения - все это противоречило "классическому идеалу" - общей основе всех теорий "типа ньютоновой механики".
Квантовая механика исходила из определенного постулата - существования классического объекта, и ничто в ней не противоречило исходному постулату, ничто не вводило произвольных допущений. Поэтому здесь в отличие от механики Ньютона можно было пойти вперед, только предъявив совершенно новые факты, раскрыв новый мир, в котором не было бы места исходному постулату квантовой механики.
Эти факты накоплялись в физике элементарных частиц. Но они не входили в арсенал эйнштейновской критики квантовой механики, и до поры до времени эта критика казалась лишенной эвристической ценности. Она считалась бесплодной, как и поиски единой теории поля. Отсюда - вывод о почти полной бесплодности того отрезка творческого пути Эйнштейна, на котором его гений должен был находиться в зените. С этим выводом трудно примириться.
Вывод о бесплодности эйнштейновской критики (и в равной степени поисков единой теории поля) теряет смысл при изменении критериев того, что мы называем эвристической ценностью. Явной и непосредственной эвристической ценностью обладают однозначные и позитивные физические теории. Но значительной, хотя неявной и косвенной, эвристической ценностью обладают также концепции незавершенные, не достигшие однозначной и позитивной формы, оставившие будущему не ответы, а только вопросы.
Объективный смысл вопросов, содержавшихся в эйнштейновской критике квантовой механики, сейчас стал довольно ясным. Гейзенберг и Бор говорили о взаимодействии движущейся элементарной частицы с некоторым телом, в отношении которого нет никаких сомнений ни в его положении, ни в скорости. Такое тело, например диафрагма, через которую проходит частица, - вне подозрений, она заведомо не сдвигается во время эксперимента. Мы игнорируем тот факт, что сама диафрагма в конечном счете состоит из частиц, лишенных, вообще говоря, определенного положения и определенной скорости. Как только мы распространяем квантово-атомистическое представление на диафрагму, квантовая механика утрачивает смысл, ведь он как раз и заключается в утверждениях, относящихся к квантовому объекту (частице), во-первых, и к классическому объекту (например, к диафрагме), во-вторых. Квантовая механика обладает не только негативным содержанием, она не только отрицает возможность одновременного сколь угодно точного определения координат и скорости частицы. Квантовая механика, как уже было сказано, обладает позитивным содержанием, она утверждает, что при определенных условиях, с определенными ограничениями можно определить положение и скорость частицы. Вот это позитивное содержание квантовой механики и подвергается сомнению во всех более радикальных (в смысле отказа от классических понятий), чем квантовая механика, теориях начиная с тридцатых годов, когда впервые усомнились в возможности точного определения переменных поля, независимо от условий Гейзенберга, обеспечивающих и ограничивающих такую возможность.
Мир, в котором нет классических объектов, выходит за рамки квантовой механики. При его описании приходится отказаться от классических понятий радикальнее, чем это сделала квантовая механика.
Большим историческим недоразумением было длительное, господствовавшее в течение многих лет представление об эйнштейновской критике квантовой механики как о критике с классических позиций. На самом деле эта критика имела иной объективный смысл, она могла указать на границы квантовой механики, отделяющие ее от более радикальной теории.
Но это не было недоразумением в буквальном смысле. Это было историческим недоразумением, т.е. невозможностью для концепции выявить свой действительный смысл до того, как новые понятия не приобретут сравнительно конкретного вида. Мы вскоре остановимся на тех понятиях, которые позволяют, оглядываясь назад, увидеть действительный смысл позиции Эйнштейна в отношении квантовой механики. Здесь дело, впрочем, не только в истории науки, но и в эволюции идей Эйнштейна. В течение долгих лет он не выходил за рамки "классического идеала" науки, т.е. стремился нарисовать картину мира, в которой нет ничего, кроме движений и взаимодействий тождественных себе тел. Действительная критика квантовой механики не "сзади", а "спереди", т.е. с более радикальных позиций, с позиций еще большей неопределенности динамических переменных, возможна только за пределами "классического идеала" науки.
Критика квантовой механики спереди принципиально отличается от попыток отказа от вероятностной версии без перехода физики на некоторую новую, еще не получившую "внутреннего совершенства" более высокую ступень. Эйнштейн отнюдь не разделял надежд на антивероятностную переформулировку существующей квантовой механики. Он писал Максу Борну:
"Видел ли ты, как Бом (как, впрочем, и де Бройль, 25 лет тому назад) верит в то, что квантовую теорию можно детерминистски истолковать по-другому? Это по-моему дешевые рассуждения, но тебе, конечно, лучше судить"
Взгляды Эйнштейна исходили из возможности проникновения физической мысли в область более общих закономерностей. Эйнштейн очень точно определил область применимости квантовой механики:
"В области механических (курсив Эйнштейна) процессов, т.е. всюду, где взаимодействие различных структур и их частей можно с достаточной точностью рассматривать, постулируя существование потенциальной энергии взаимодействия между материальными точками, статистическая квантовая теория и поныне представляет собой замкнутую систему, правильно описывающую эмпирические соотношения между наблюдаемыми величинами и позволяющую теоретически предсказывать их значения"
Здесь дано определение механических процессов. Эйнштейн понимает под ними движения, вызванные взаимодействием частиц, причем взаимодействия зависят от пространственного положения частиц. Речь идет о картине, в которой частицы движутся так или иначе в зависимости от своего положения и соответственно от действующих на них сил, обязанных взаимодействию тел, т.е. о "классическом идеале": все, что происходит в мире, объясняется движением и взаимодействием масс.
Чтобы показать неклассический характер тех позиций, с которых Эйнштейн критиковал квантовую механику и соответственно радикально неклассические импульсы для развития квантовой механики под влиянием этой критики, следует коснуться следующего сходства и вместе с тем различия теории относительности и боровского принципа дополнительности.
Сначала остановимся на последнем.
Л. Розенфельд в одном весьма ясном и глубоком очерке принципа дополнительности излагает следующую забавную историю, заимствованную из датской литературы. Один добросовестный лиценциат, задумав написать научный труд, занялся подготовкой перьев. Но перья могут затачиваться наилучшим образом, если выбрать наиболее подходящие камни для такого затачивания. И лиценциат погрузился в минералогию. Через много лет в его комнате оказалась коллекция минералов, и он стремился получить исчерпывающее решение вопроса об оптимальном материале для точки перьев. Он не мог остановиться в охватившем его неуемном рвении и стремлении к абсолютной строгости и точности при подготовке труда, и труд не был начат. В этом мире, чтобы перейти от логической схемы к делу, всегда приходится какое-то звено объявлять далее неанализируемым. В последнем счете это объясняется воздействием "перехода к делу" на форму логической схемы тем обстоятельством, что логическая схема не может быть содержательной без некоторых заданных, не подвергающихся анализу понятий, что эти понятия воздействуют на схему и их нелинейная связь со схемой останавливает простое подведение под схему новых и новых случаев. В квантовой механике квантово-атомистический анализ, учет дискретности поля и континуально-волновой природы частиц, должен остановиться перед телами, которые мы считаем неквантовыми, к которым мы подходим, закрывая глаза на корпускулярно-волновой дуализм и дискретность действия, иначе говоря, перед телами, которые мы вводим в игру как заведомо классические тела. Именно поэтому квантовая механика не имеет смысла без тex классических понятий, которые она ограничивает в части их применимости и физической представимости, без понятий импульса, скорости, положения в пространстве и т.д. Эти понятия входят в квантовый мир вместе с заведомо классическими темами, с которыми взаимодействуют квантовые объекты.
Боровское макроскопическое тело взаимодействия, тело, позволяющее идентифицировать движущуюся частицу по непрерывно изменяющимся значениям ее динамических переменных (например, диафрагма с отверстием, позволяющая с той или иной степенью точности зарегистрировать координаты электрона), - это и есть тот камень лиценциата, где необходимо прекратить анализ (в данном случае квантовый анализ, учет корпускулярно-волновой природы частиц, составляющих "прибор"). Без таких последних звеньев квантового анализа, без классических, т.е. освобожденных от квантовой детализации, объектов, из картины мира исчезают частицы, тождественные себе, отнесенные к определенным типам (и поэтому принципиально наблюдаемые: частицу как таковую, частицу, не обладающую определенным типом взаимодействия с другими частицами, - определенной мировой линией, вообще не обладающую нетривиальной себетождественностью, так же трудно наблюдать, как, например, "животное как таковое", не относимое ни к какому конкретному типу). Как уже говорилось, без интегральных представлений о типах мировых линий и соответственно без представлений о типах частиц самый конкретный образ частицы в данной пространственно-временной клетке оказывается самым абстрактным и теряющим физический смысл.
Существует, однако, весьма существенная связь между: 1) определением формы мировой линии (т.е. интегральной характеристикой движущейся частицы), отнесенным к данной мировой точке, взятым в локальном представлении, иначе говоря, значением импульса и энергии частицы, и 2) чисто локальной характеристикой частицы - ее пространственно-временнымши координатами. Они связаны неконтролируемым воздействием одного определения на другое, одной характеристики на другую. В такой констатации - основа негативной стороны принципа дополнительности, невозможности в одном эксперименте точно определить сопряженные динамические переменные. Но принцип дополнительности имеет позитивную сторону. Прежде всего он позволяет переосмыслить гарантию нетривиальной себетождественности частицы - непрерывное и закономерное изменение ее динамических переменных, - которая существовала в классической физике, и этой ценой ввести такую гарантию в микромир. Переосмысление заключается в замене переменной ее вероятностью, которая изменяется непрерывно, в точном соответствии с законом. Сохраняется ли при таком переосмыслении эйнштейновский критерий физической содержательности понятий? Не противоречит ли этому скачок - в понятии фигурирует точное значение вероятности, а в эксперименте измеряется значение самой переменной? Эйнштейновский критерий сохраняется потому, что мы в принципе можем экспериментально проверить значение переменной с любой точностью и получить непрерывный ряд экспериментально проверенных значений самой переменной, а не только ее вероятностей. Мы это можем сделать за счет сопряжений переменной. Можем, впрочем, только в нерелятивистской квантовой механике. В релятивистской квантовой теории исчезает, вообще говоря, возможность точного измерения значений даже одной переменной. Мы постараемся показать, что и здесь возможность оперировать образами нетривиально-себе-тождественных частиц вытекает из принципа дополнительности. Но для этого требуется изложить принцип дополнительности в более общей форме, отказавшись от специфического для нерелятивистской квантовой механики противопоставления сопряженных динамических переменных. Такое обобщение оказывается нетавтологическим, оно позволяет увидеть некоторые новые аспекты релятивистской теории элементарных частиц. Но при этом уже несколько модифицируется (и усиливается!) требование физической содержательности понятий и внутреннего совершенства теории.
Внутреннее совершенство состоит в максимально общем характере исходных понятий и постулатов, а внешнее оправдание - в их связи с экспериментом. В теории относительности такое требование было адресовано геометрическим постулатам и понятиям. Физическая содержательность соотношений, характеризующих координатные преобразования и их инварианты, была взята под подозрение, физика проверила наличие физических эквивалентов, которое казалось бесспорным для ряда соотношений. Оказалось, что в мире скоростей, сопоставимых со скоростью света, физическими эквивалентами обладают четырехмерные псевдоевклидовы, а в непренебрежимых гравитационных полях - римановы геометрические соотношения. Попытка сохранить за трехмерной геометрией физическую содержательность была признана искусственной, не обладающей "внутренним совершенством". В квантовой механике физическую содержательность обрели многие математические абстракции теории матриц, учения о бесконечномерных пространствах и т.д. Но основным для идейного стержня квантовой механики - принципа дополнительности - была идея физической содержательности логического парадокса.
Когда Нернст говорил, что теория относительности Эйнштейна - это уже не физическая, а более общая теория, он мог с тем же основанием повторить такую характеристику в адрес принципа дополнительности. Но и принцип Эйнштейна, и принцип Бора - физические принципы, только физика здесь охватывает более общие, приобретающие физический смысл понятия. В первом случае это понятия геометрической размерности и геометрической аксиоматики. Во втором случае речь идет о принципиальной возможности измерений и рассматриваются более общие логико-математические или математические понятия, с помощью ю которых формулируются условия возможности измерений сопряженных динамических переменных.
Именно логическая парадоксальность свойственна боровскому принципу дополнительности. Он не противоречит ни одному из математических постулатов. Частица проходит через последовательные пространственные точки с той или иной скоростью. Можно ли утверждать, что частица прошла через данную точку? Нет, в общем случае, когда в той или иной мере определена скорость частицы, уже нельзя точно определять ее местонахождение в данный момент. В этом сказывается волновая природа частицы. Мы не можем сказать, что частица находится в данной точке в данный момент и не можем сказать, что частица не находится в ней. Все это противоречит логическому постулату исключенного третьего.
Можно довольно далеко провести аналогию между отношением принципа дополнительности к логике и отношением принципа относительности к геометрии. В XIX в. уже существовали попытки построения так называемой поливалентной логики, отказывающейся от постулата исключенного третьего и вводящей наряду с оценками "истинно" и "ложно" третью оценку высказываний (например, "неопределенно"). Этим схемам иногда придавали онтологический смысл, но изучаемые логикой тривалентные физические образы, как в XIX в. физические образы неевклидовой геометрии, напоминают виртуальные фотоны, поглощаемые излучившей их частицей, - их эффект сказался только в самой логике. Критика классической логики давно расшатала уверенность в абсолютном характере принципа исключенного третьего, но отсюда было еще далеко до однозначной физической теории.
Начиная со второй четверти нашего столетия положение изменилось. Концепции Бора и других основателей квантовой механики связали неопределенность и дополнительность сопряженных динамических переменных движущейся частицы с экспериментально проверенными, достоверными физическими выводами. Абсолютная реальность, абсолютная достоверность, несомненная физическая содержательность логического парадокса так же характерны для квантовой механики, как для теории относительности характерна достоверность и физическая содержательность парадоксальных геометрических соотношении. Парадоксальность самого бытия, парадоксальный характер упорядочивающего Вселенную объективного ratio - вот что поразило широкий круг людей, ознакомившихся с идеями Эйнштейна и Бора, а иногда лишь интуитивно угадавших скрывавшийся в них переворот в характере научного мышления.
Как известно, в теории функции кроме числовых значений функции, зависящих от значений аргумента, фигурируют операторы, превращающие уже не одно значение функции в другое, а один вид функции в другой вид. Крупные физические открытия всегда в какой-то мере играли аналогичную роль. Они не только увеличивали число известных людям закономерностей природы, но изменяли также методы науки, стиль научного мышления, характер пути, ведущего от частных наблюдений к общим законам. В обобщениях Эйнштейна и Бора "операторный" эффект гораздо сильнее, чем в теориях прошлого. В руках Эйнштейна и Бора физика изменила не только содержание результатов научной мысли. Она радикально изменила логическую структуру и математический аппарат. Более того, изменилось, стало принципиально иным отношение физики к логике и математике. Физика неизбежно должна включать в свои рамки геометрические аксиомы и логические принципы в качестве физических констатации. Вместе с тем она может представить соотношения и связи физических объектов в масштабах Вселенной в целом и становится, таким образом, общей концепцией мироздания. Наряду с беспрецедентным проникновением собственно физических понятий и методов во все области науки преобразующее воздействие физики XX столетия на науку и культуру определяется новыми математическими и логическими принципами, которые получили в физике онтологический смысл.
Поэтому имя Эйнштейна будет всегда символом не только гигантского приращения сведений о Вселенной, но и гигантского преобразования вида функции, связывающей результаты научных обобщений с их исходными данными. Речь идет о преобразовании и наделении физическим содержанием математических понятий. Имя Бора также будет символом преобразования вида функции, связывающей выводы науки с наблюдениями, но здесь уже речь идет о преобразовании логики научных умозаключений |
К содержанию книги: Биография и труды Эйнштейна
Смотрите также:
|
Специальная теория относительности. Альберт Эйнштейн
|
|
|
Эйнштейн. Элдридж - ушедший сквозь время
Загадки Времени. Время как энергия
|
Кротовая нора — это своего рода тоннель в пространстве-времени
|
тайны Земли и Вселенной. Загадка Большого Взрыва
|