Александрийская математическая школа. Универсальная ученость Эратосфена. Аполлоний Пергский

СОВРЕМЕННОЕ ЕСТЕСТВОЗНАНИЕ

 

3.7.2. Александрийская математическая школа

 

 

В древнегреческой культуре обстоятельное развитие получила преж­де всего математика. Уже в VIV вв. до н.э. в древнегреческой мате­матике были разработаны геометрическая алгебра, теория делимос­ти целых чисел и теория пропорций (Архит), метод «исчерпывания» Евдокса (как прообраз теории пределов), теория отношений Евдокса и др. Качественно новый этап в развитии математики связан с дея­тельностью александрийской математической школы. У ее истоков стоял великий математик древности, педагог и систематизатор мате­матической науки Евклид. О личности Евклида нам известно очень мало. Жил он в последней четверти IV— первой четверти III в. до н.э. Учился в Афинах, затем переехал в Александрию.

В своем основном труде «Начала», состоявшем из 13 книг, Евклид изложил все достижения древнегреческой математики в системати­зированной аксиоматической форме. (Изучение геометрии в сред­ней школе вплоть до самого последнего времени строилось на основе «Начал».) В первых четырех книгах «Начал» излагалась геометрия на плоскости; в пятой и шестой книгах — теория отношений Евдокса; в седьмой, восьмой и девятой книгах — теория целых и рациональных чисел, в основе своей разработанная еще пифагорейцами; в десятой книге — свойства квадратичных иррациональностей; в одиннадцатой книге — основы стереометрии; в двенадцатой книге — метод исчерпы­вания Евдокса, в частности доказываются теоремы, относящиеся к площади круга и объему шара и др.; в заключительной, тринадцатой книге рассматривались свойства пяти правильных многогранников, в которых Платон видел идеальные геометрические образы, выра­жающие основные структурные отношения Космоса. Изложение ма­тематических знаний носило дедуктивный характер, теории выводи­лись из небольшого числа аксиом.

Универсальной ученостью отличался Эратосфен, у которого есть работы не только по математике, но и по астрономии, географии, истории, философии и филологии. Особенно известны его работы по определению размеров земного шара, по географии. В математике Эратосфен известен своими исследованиями целочисленных про­порций, открытием «решетки Эратосфена» (способ выделения простых чисел из любого конечного числа нечетных чисел, начиная с трех.

 В Александрии начинал свой творческий путь и Архимед. Именно здесь он сложился как математик. Возвратившись в Сиракузы, Архимед продолжал поддерживать тесные отношения с александрийскими математиками (до нас дошла его переписка с ними). Среди математических работ Архимеда, импульс для которых он получил во время своего пребывания в Александрии, особенно важными являются работы, связанные с развитием метода «исчерпывания» Евдокса и подходом к понятию определенного интеграла.

 В александрийской школе творил Никомед, известный открытием алгебраической кривой конхоиды (в полярных координатах эта кривая имеет вид ρ = А + В/cos φ), которую он применял для решения задач удвоения куба и трисекции угла.

Величайшим математиком древности был Аполлоний Пергский. В своем основном сочинении «Конические сечения» он дал теорию конических сечений в такой исчерпывающей форме, что никто из последующих математиков (вплоть до Нового времени) к ней добавить ничего не смог. Аполлоний Пергский непосредственно подошел к основам аналитической и даже проективной геометрии. Им была разработана законченная теория кривых второго порядка, в том числе эллипса. Кроме того, Аполлоний предложил метод описания равномерных периодических движений как результат сложения более простых — равномерных круговых движений. Это стало важнейшей предпосылкой создания геоцентрической системы К. Птолемеем.

 

 

СОДЕРЖАНИЕ:  Концепции современного естествознания. Найдыш. Учебник

 



Смотрите также:

 

Естествознание

  

Естествознание. НОВЕЙШАЯ РЕВОЛЮЦИЯ В ЕСТЕСТВОЗНАНИИ

Этим естествознание наступившей новой исторической эпохи существенно отличалось от естествознания.

 

Общие условия развития естествознания

В своем труде «Материализм и эмпириокритицизм», опубликованном в 1909 г., Ленин ответил на кардинальные философские, вопросы, возникшие в ходе развития естествознания.

 

естествознание. НОВЕЙШАЯ РЕВОЛЮЦИЯ В ЕСТЕСТВОЗНАНИИ...

Общие условия развития естествознания. Борьба передовых и реакционных идей в естествознании.

 

СТАНОВЛЕНИЕ МЕДИЦИНЫ. Внедрение естествознания в медицину

естествознания в области медицины ... В тесной связи со всеми медицинскими предметами она не только принесла свет к постели больного и всяческие благодеяния...

 

...вокруг света (1831—1836) и его значение в истории естествознания

областях естествознания, что проф. Генсло, рекомендуя его в 1831 г. в качестве натуралиста на «Бигль», руководился далеко не одной лишь своей интуицией.

 

ВНУТРЕННЯЯ МЕДИЦИНА терапия. Клиническая медицина

Все это вело к серьезному отставанию клинической медицины того времени от развивающегося естествознания. ВНУТРЕННЯЯ МЕДИЦИНА (терапия).

 

...и науки Бэкон выступил как провозвестник опытного естествознания...

...с одной стороны, о качественно простых природах, а с другой, - о чём-то более близком будущим объяснительным моделям механистического естествознания.

 

Медицина В ЗАПАДНОЙ ЕВРОПЕ В ПЕРИОД ПОЗДНЕГО СРЕДНЕВЕКОВЬЯ...

В эпоху Возрождения основными чертами естествознания стали: утверждение опытного метода в науке, развитие математики и механики, метафизическое мышление...

 

Революция в естествознании, идущая на протяжении всего XX...

И таким образом в научном мире сложился странный парадокс: представители естествознания, изучающие заведомо более простые объекты, давно открыли сложность, многомерность...

 

НИКОЛАЙ КУЗАНСКИЙ. Биография и трактаты Николая Кузанского....

космологии Коперника и опытного естествознания. Николай Кузанский родился в селении Куза в Южной Германии в 1401 году Отец.

 

Последние добавления:

 

Психокоррекционная и развивающая работа с детьми   Введение в культурологию

Валеология. Вайнер  Валеология   География мирового хозяйства  Языковедение   

Туристская деятельность   Сборник задач по банковскому делу     Логика и аргументация