БЕТОН ДЛЯ ЗАЩИТЫ ОТ РАДИАЦИИ - заполнители барит, железные руды, металлолом

Вся электронная библиотека >>>

 Бетоны. Заполнители для бетонной смеси >>

  

 Строительство. Бетоны

Заполнители бетона


Раздел: Быт. Хозяйство. Строительство. Техника

 

БЕТОН ДЛЯ ЗАЩИТЫ ОТ РАДИАЦИИ

 

 

В связи с развитием ядерной энергетики и все более широким использованием атомной энергии в научных исследованиях, промышленности, сельском хозяйстве, здравоохранении необходимо обеспечить защиту обслуживающего персонала и окружающей территории от опасных радиоактивных воздействий.

Естественные радиоактивные вещества и искусственно получаемые радиоактивные изотопы воздействуют на живую ткань посредством испускаемых ими при распаде а-, р-, лучей и нейтронов. а-Лучи (потоки ядер гелия) и р-лучи (потоки электронов) обладают сравнительно небольшой проникающей способностью. Значительно опаснее у-лучи, представляющие собой поток фотонов, и нейтронное излучение. у-Лучи имеют скорость света и обладают большой проникающей способностью. Закон ослабления Y-излуче-ния, проходящего через вещество, состоит в следующем: при последовательном увеличении толщины слоя вещества на одну и ту же величину интенсивность излучения уменьшается в одном и том же определенном отношении. Так называемый слой половинного ослабления уменьшает интенсивность излучения в 2 раза. Два таких слоя ослабят излучение в 4 раза, и каждый последующий слой будет дополнительно ослаблять излучение вдвое. Исходя из этого с учетом некоторых других факторов) рассчитывается толщина защитного ограждения, необходимая для ослабления излучения до допускаемой нормами интенсивности.

Толщина слоя половинного ослабления у-излучения зависит от плотности вещества-поглотителя: чем тяжелее материал, тем меньше толщина ограждения.

Незаряженные частицы нейтроны также обладают большой проникающей способностью. Не взаимодействуя с заряженными частицами атомов на расстоянии (как а- и р-частицы), они замедляются только при соударениях. Наибольший эффект поглощения энергии нейтронов имеет место при соударении их с частицами близкой к ним массы, например с ядрами водорода — протонами.

 

 

В этом случае энергия нейтрона распределяется примерно поровну между двумя столкнувшимися частицами, т. е. нейтрон при каждом соударении значительно тормозится. При соударении с тяжелыми ядрами нейтрон отражается при сравнительно малой потере скорости. Поэтому в отличие от уилпучения наибольшее замедление нейтронов имеет место в веществах, содержащих легкие элементы, особенно водород. Веществом-замедлителем может служить, в частности, вода.

•          Основным материалом для одновременной защиты от у- и нейт-

юнного излучения являются особо тяжелые и гидратные бетоны.

1оскольку гидраты, задерживающие поток нейтронов, содержатся

в цементном камне, основное назначение тяжелых заполнителей — поглощение у-лучей.

В качестве заполнителей применяются барит, железные руды, металлолом.

Барит — сернокислый барий (BaS04) — весьма распространенный в природе минерал белого цвета. Его плотность — около 4500 кг/м3, предел прочности при сжатии — около 50 МПа. Плотность бетона на баритовом заполнителе достигает 3800 кг/м3.

Магнетит, или магнитный железняк,— слабоокисленная железная руда (Fe304) с плотностью около 4500... 5000 кг/м3 и пределом прочности при сжатии до 200 МПа. Плотность бетона на песке и щебне из магнетита составляет около 4000 кг/м3.

Гематитовые руды содержат красный железняк (Fe203). Плотность гематита — до 4300 кг/м3, а бетона на его основе — до 3500 кг/м3.

Лимонит, или бурый железняк, содержит гидроксид железа 2Fe203-3H20), т. е. может быть средством защиты как от у-лучей, так и от нейтронов. Плотность лимонита — около 3500 кг/м3, лимо-штового бетона — 2600... 2800 кг/м3, т. е. лимонитовый бетон лишь немного тяжелее обычного, однако связанной воды в нем может быть вдвое больше.

Для   получения    особо   тяжелых   бетонов  плотностью   5000...

'000 кг/м3 применяют чугун  (плотность около 7500 кг/м3)  в виде

Дроби, крошки и скрапа (крупного лома), а также сталь (плотность

около 7800 кг/м3) в виде обрезков, отходов от штамповки, дробленой стружки.

Необходимо учитывать воздействие нейтронного излучения на свойства заполнителей. Во-первых, при поглощении нейтронов ядрами атомов возможно вторичное у-излучение. Это особенно характерно для железа. Поэтому железный лом и руды не всегда могут быть использованы. В этом отношении предпочтителен барит, не дающий вторичного у-излучения. Во-вторых, нейтроны при столкновении с ядрами атомов могут нарушить их равновесное положение в кристаллической решетке. При этом возможно изменение объема и свойств заполнителей. Например, при облучении кварца нейтронами происходит его аморфизация, сопровождающаяся значительным анизотропным расширением, что может привести к разрушению бетона. Данное явление следует учитывать не только при проектировании составов защитных бетонов, но также обычных конструкционных, жаростойких и теплоизоляционных бетонов, применяемых при строительстве ядерных установок.

Крупность заполнителей для защитных бетонов определяется массивностью бетонируемой конструкции и принимается максимально возможной. Зерновой состав заполнителей подбирают с таким расчетом, чтобы как можно больше насытить бетон тяжелым заполнителем; чем тяжелее получится бетон, тем меньшей может быть толщина ограждения. В этом случае предпочтительны прерывистые зерновые составы заполнителей, позволяющие получить бетон наибольшей плотности.

Бетонные смеси на особо тяжелых заполнителях в значительной степени подвержены сегрегации, расслоению. Поэтому большое значение имеет плотность и вязкость растворной части бетона. При прерывистом зерновом составе заполнителя иногда применяют раздельное бетонирование методом восходящего раствора.

 

К содержанию:  Заполнители для бетона

 

Смотрите также:

 

  Полимерные бетоны   Высокопрочный бетон  Растворы строительные  Смеси бетонные   Бетоны  Монолитный бетон и железобетон  Отделочные и облицовочные материалы Строительные материалы и изделия  Строительные материалы   Стройматериалы

 

Свойства заполнителей

Заполнители органические. Древесные заполнители

Наполнители

О заполнителях, наполнителях и добавках

Крупные заполнители

Мелкие заполнители. Песок

Заполнители неорганические

О заполнителях из камыша и костры и о полимерных заполнителях

 

ЗАПОЛНИТЕЛИ ДЛЯ БЕТОНА

Добавки в бетонные смеси

Минеральные порошки-заменители цемента (активные минеральные добавки и наполнители)

Суперпластификаторы

Методы выдерживания бетона на морозе

Биоциды

Комплексные добавки

Добавки в бетонные смеси. Добавки пластифицирующего действия

Регулирующие схватывание бетонных смесей и твердение бетонов

Регулирующие пористость бетонной смеси и бетона

Придающие бетону специальные свойства

Полифункционального действия

Комплексные добавки-модификаторы

Армирующая фибра

Добавки для бетона

 

Заполнители

Изменение насыпной плотности песка в зависимости от его влажности

Цементы. Цементы на основе портландцементного клинкера. Портландцемент и шлакопортландцемент

Цементы сульфатостойкие

Цемент для строительных растворов

Портландцементы белые

Алюминатные цементы

Тенденции в области развития нормативной базы цементной промышленности

Цементные бетоны. Бетоны

Выбор материалов для бетона

Общие положения по расчету состава бетона

Добавки в бетон

 

ПРИГОТОВЛЕНИЕ БЕТОННЫХ СМЕСЕЙ. Свойства бетонных смесей

Приготовление бетонных смесей

 

НАУКА О ЦЕМЕНТЕ

1.2. ПОЛУЧЕНИЕ ПОРТЛАНДЦЕМЕНТА

1.3. СОСТАВ ПОРТЛАНДЦЕМЕНТА

1.4.2. Двухкальциевый силикат

1.4.3. Трехкальциевый алюминат

1.4.4. Ферритная фаза

1.4.5. Портландцемент

1.5. МЕХАНИЗМ ГИДРАТАЦИИ

1.5.2. Трехкальциевый алюминат

1.5.3. Портландцемент

2. ДОБАВКИ-УСКОРИТЕЛИ

3. ВОДОПОНИЗИТЕЛИ И ЗАМЕДЛИТЕЛИ СХВАТЫВАНИЯ

3.1.1. Классификация добавок-водопонизителей по их влиянию на сроки схватывания и темп гидратации цемента

3.1.2. Химический состав и производство добавок-водопонизителей — замедлителей схватывания

3.1.2.1. Лигносульфонаты

3.1.2.2. Гидроксикарбоновые кислоты

3.2. ПРИГОТОВЛЕНИЕ И ИСПОЛЬЗОВАНИЕ ВОДОПОНИЗИТЕЛЕЙ-ЗАМЕДЛИТЕЛЕЙ

3.2.2. Технология введения добавок

3.2.3. Условия хранения и время жизни добавок

3.2.4. Дозировка добавок

4. СУПЕРПЛАСТИФИКАТОРЫ

4.1.1. Классификация суперпластификаторов

4.1.2. Пластифицирующее действие

4.1.3. Области применения и ограничения

4.2. ДЕЙСТВИЕ СУПЕРПЛАСТИФИКАТОРОВ НА ЦЕМЕНТНЫЕ ПАСТЫ

4.2.2. Адсорбция

4.2.3. Дзета-потенциал (£-потенциал)

4.2.4. Гидратация цемента и микроструктура цементного камня

4.2.5. Оценка качества добавок

4.3. БЕТОННАЯ СМЕСЬ

6. МИНЕРАЛЬНЫЕ ДОБАВКИ

6.3.1. Вулканические стекла

6.3.2. Вулканические туфы

6.3.3. Обожженные глины и сланцы

6.3.4. Диатомовые земли

6.4.1.2. Зола рисовой шелухи

6.4.1.3. Кремнезем, осажденный из газовой фазы – белая сажа

6.4.1.4. Доменный шлак

6.4.1.5. Другие шлаки

8.2. ПРИГОТОВЛЕНИЕ И ПРИМЕНЕНИЕ ПРОТИВОМОРОЗНЫХ ДОБАВОК

9. СМЕШАННЫЕ ДОБАВКИ

9.3.6.2. Состав бетонной смеси

9.4. ДОБАВКИ, ПОНИЖАЮЩИЕ ВЛАГО-И ВОДОПРОНИЦАЕМОСТЬ

9.4.1. Виды добавок

9.4.7. Применение добавок

9.5. ДОБАВКИ, ЗАЩИЩАЮЩИЕ ОТ ВОЗДЕЙСТВИЯ ЩЕЛОЧЕЙ НА ЗАПОЛНИТЕЛИ

9.5.2. Виды химических добавок

9.6. ДОБАВКИ, ОБЛЕГЧАЮЩИЕ ПОДАЧУ БЕТОНА И РАСТВОРА НАСОСАМИ

9.6.2. Виды добавок

9.6.3.2. Введение добавки

9.7. ФЛОКУЛИРУЮЩИЕ ДОБАВКИ

9.7.2 Виды добавок

9.8. БАКТЕРИЦИДНЫЕ, ФУНГИЦИДНЫЕ И ИНСЕКТИЦИДНЫЕ ДОБАВКИ

9.8.2. Виды добавок

9.9. ИНГИБИТОРЫ КОРРОЗИИ

9.9.2. Виды добавок

9.9.4.1. Введение добавки

9.10. ДОБАВКИ ДЛЯ ТОРКРЕТИРОВАНИЯ БЕТОНА

 

7.3.1.3. Заполнители

7.3.2. Подбор состава смеси