Справочник строителя |
Бетоны. Материалы, технологии, оборудование |
|
Минеральные порошки-заменители цемента (активные минеральные добавки и наполнители) составляют отдельную и достаточно автономную группу. Эти порошки вводят либо при помоле клинкера, либо непосредственно в бетонную смесь. Минеральные добавки снижают затраты на строительство, повышают прочность, морозостойкость, водонепроницаемость бетона, а также оказывают влияние на конечные свойства бетона за счет гидравлического или пуццоланового воздействия. Добавки, проявляющие пуццолановую активность, могут быть как естественного происхождения (вулканический пепел), так и побочными продуктами, образующимися при сгорании топлива (зола-унос) или металлургической промышленности (кремнеземная пыль, микросилика). Комитет SBC RILEM предложил вариант классификации минеральных добавок техногенного происхождения. Эта классификация (табл. 1. 38) позволяет оценить материалы по их воздействию на цементные системы: по проявлению вяжущих свойств и пуццолано-вого эффекта, то есть способности вступать в химическую реакцию с присутствующими и образующимися в бетонной смеси химическими соединениями. Среди техногенных добавок, проявляющих пуццо-лановую активность и вяжущие свойства, особое внимание уделяется аморфному кремнезему, названному первооткрывателями «Microsilica». «Microsilica» &г-ляется высокоактивным пуццоланом и стала известной в результате научно-практической активности скандинавских ученых. Сегодня ее используют при любом ответственном строительстве, а мировым монополистом в производстве микросилики и владельцем патентов на технологию ее изготовления является норвежский концерн ELKEM ASA. В физическом смысле микросилика (аморфный конденсированный микрокремнезем) является пылью, которую образуют микроскопические шарики (микросферы) размером 0,1-0,3 мкм. В бетонных смесях и строительных растворах этот порошок ведет себя двояко: сферическая форма частиц содействует усилению «подшипникового эффекта», а кремнезем проявляет «пуццолановую» активность. Наличие миллионов микросфер облегчает перемещение различных компонентов бетонной смеси по отношению друг к другу, способствуя повышению равномерности распределения компонентов, повышению удобоукладываемости смеси и ее перекачиваемости, что особенно важно в случае применения бетононасосов при высотном строительстве.
При затворении бетонной смеси водой и гидратации клинкерных минералов образуется ряд химически активных веществ, к которым, в первую очередь, следует отнести гидрат окиси кальция и гидрат силиката кальция, во многом определяющий прочность цементного камня и бетона. Добавление в бетонную смесь микрокремнезема создает условия для превращения нестабильной и растворимой гидроокиси кальция в кристаллический гидрат силиката кальция. В результате возрастают прочность и химическая стойкость бетона, а микросферы плотно заполняют пространство, освобождаемое химически связанной водой. Значительно растущая плотность структуры бетона повышает как его прочность, так и водонепроницаемость, а следовательно, и долговечность бетонного камня, его стойкость к факторам коррозии. Отечественные ученые также исследовали и использовали свойства активного кремнезема при получении рецептур добавок - модификаторов бетона. Под руководством проф. Батракова А.Г. синтезирован модификатор на основе аморфного кремнезема и суперпластификатора, способствующий достижению высоких показателей по прочности, плотности и стойкости. Учеными НИИЖБ синтезированы добавки, как содержащие микросилику, так и ее смесь с золой-уносом, другими компонентами. Разновидностью минеральных добавок являются расширяющиеся добавки, вводимые в портландце-ментный клинкер при его помоле. В качестве расширяющихся добавок используют алюминаты и сульфаты кальция, оксиды кальция и магния, специально приготовленные из глиноземистого цемента высококальциевые алюминаты, глиноземистый цемент, сталерафи-нировочные шлаки, обожженные алунитовые породы. В качестве добавок могут рассматриваться следующие материалы для механического укрепления бетона: полипропиленовые волокна, металлическая фибра и стружки, которые не образуют единого арматурного каркаса, но способствуют повышению прочности бетона на изгиб и при срезывающих нагрузках. Вводят волокна или фибру на стадии приготовления бетонных смесей. Искусственные химические добавки-модификаторы представляют собой вязкие растворы или порошкообразные материалы, растворимые в воде с образованием слабощелочных или нейтральных растворов. Это могут быть чистые неорганические вещества, их смеси, органические соединения, органоминераль-ные комплексы. Модификаторы могут быть синтезированы специально (но не обязательно для нужд строительства) или быть побочными продуктами (отходами) других производств. Химические органические добавки являются продуктами органического синтеза целлюлозных соединений или переработки отходов лесохимии, целлюлозно-бумажной, химической и нефтехимической промышленности, агрохимии и др. Наиболее распространенные представители органических химических добавок (модификаторов) - это поверхностно-активные вещества (ПАВ), на их основе могут быть получены практически любые функциональные типы добавок. ПАВ по-разному проявляют активность и направление действия. Вид и положение функциональных групп в молекуле обусловливает взаимодействие ПАВ с гидрооксидом кальция на поверхности твердой фазы. Природа радикала и его строение, конформное состо.-яние макромолекулы цепи характеризует сплошность пленки продуктов взаимодействия в поверхностном слое гидратирующего цемента.. Степень растворимости продуктов взаимодействия олигомеров с жидкой фазой цементного камня определяет эффективность модификатора. |
К содержанию книги: «Бетоны»
Смотрите также:
Как приготовить бетон и строительные растворы
Исходные материалы 1.1. Минеральные вяжущие вещества 1.2. Заполнители 1.3. Вода 1.4. Определение потребного количества материалов Строительные растворы 2.1. Свойства строительных растворов 2.2. Виды строительных растворов 2.3. Приготовление строительных растворов 2.4. Составы Бетоны 3.1. Виды бетона 3.2. Свойства бетона 3.3. Приготовление бетонного раствора 3.4. Составы 3.5. Шлакобетон 3.6. Опилкобетон
Машины и оборудование для приготовления, транспортирования бетонов и бетонных смесей
7.2. Машины для транспортирования бетонных смесей и растворов
7.3. Комплекты машин для укладки и распределения бетона и отделки его поверхности
7.4. Оборудование для уплотнения бетонной смеси
Оборудование для производства железобетонных изделий
Оборудование бетоносмесительных цехов
Оборудование для изготовления арматуры
Оборудование формовочных цехов
Химико-минералогический состав портландцемента
Трехкальциевый гидроалюминат и действие гипса
Структура гидратированного цемента
Механическая прочность цементного геля
Быстротвердеющий портландцемент
Особобыстротвердеющий портландцемент
Портландцемент с умеренной экзотермией
Сульфатостойкий портландцемент
Ускорители и замедлители твердения
ГЛАВА 3. Свойства заполнителей
Общая классификация заполнителей
Природные заполнители для бетона
Сцепление заполнителя с цементным камнем
Прочие механические свойства заполнителя
Пористость и водопоглощение заполнителя
Глинистые, илистые и пылевидные частицы в заполнителе
Слабые и выветрелые зерна заполнителя
Равномерность изменения объема заполнителя
Реакция щелочей цемента с заполнителями бетона
Термические свойства заполнителя
Требования к зерновому составу заполнителя
Рациональные зерновые составы заполнителей
Зерновой состав мелкого и крупного заполнителей
Особо крупные и особо мелкие зерна заполнителя
«Прерывистый» зерновой состав заполнителя
Наибольшая крупность заполнителя
Определение удобоукладываемости бетона
Факторы, влияющие на удобоукладываемость
Определение коэффициента уплотнения
Влияние времени и температуры на удобоукладываемость
Бетонная смесь для подачи бетононасосом
Раздельная укладка бетонной смеси методом «Прелакт»
Прочность бетона при растяжении
Трещинообразование и разрушение при сжатии
Влияние крупного заполнителя на прочность бетона
Влияние жирности смеси на прочность бетона
Влияние возраста на прочность бетона
Самозалечивание трещин в бетоне
Прочность бетона при сжатии и прочность при растяжении
Сцепление между бетоном и арматурой
Влияние температуры на прочность бетона
Пропаривание при атмосферном давлении
Пропаривание при повышенном давлении
ГЛАВА 6. Упругость, усадка и ползучесть бетона
Факторы влияющие на усадку бетона
Влияние ухода и условия твердения бетона
Дифференциальная усадка бетона
Усадка за счет карбонизации бетона
Факторы влияющие на ползучесть бетона
Химические воздействия на бетон
Испытание бетона на сульфатостойкость
Действие морской воды на бетон
Действие мороза на свежеуложенный бетон
Действие мороза на затвердевший бетон
Испытания бетона на морозостойкость
Бетон с воздухововлекающими добавками
Коэффициент термического расширения бетона
ГЛАВА 8. Испытание затвердевшего бетона
Влияние условий испытаний образцов
Разрушение образцов при сжатии
Влияние отношения высоты к диаметру на прочность бетона
Сравнение прочности бетонных кубов и цилиндров
Размеры образца и размеры заполнителя
ГЛАВА 9. Легкие и особотяжелые бетоны
Глава I. ОСОБЕННОСТИ ТЕХНОЛОГИИ ИЗГОТОВЛЕНИЯ ВЫСОКОПРОЧНЫХ БЕТОНОВ
1. МАТЕРИАЛЫ, ИСПОЛЬЗУЕМЫЕ ДЛЯ ПРИГОТОВЛЕНИЯ БЕТОНА
2. ВЛИЯНИЕ КАЧЕСТВА И ДОЗИРОВКИ СОСТАВЛЯЮЩИХ НА СВОЙСТВА БЕТОНА И БЕТОННОЙ СМЕСИ
3. ПОДБОР СОСТАВА И КОНТРОЛЬ КАЧЕСТВА ВЫСОКОПРОЧНОГО БЕТОНА
4. ПОЛУЧЕНИЕ ВЫСОКОПРОЧНОГО БЕТОНА В ПРОИЗВОДСТВЕННЫХ УСЛОВИЯХ
1. ПРОЧНОСТЬ И ДЕФОРМАЦИИ БЕТОНА
2. ДИАГРАММА СОСТОЯНИЙ БЕТОНА И ПАРАМЕТРИЧЕСКИЕ ТОЧКИ
3. ВЛИЯНИЕ ПАРАМЕТРОВ RT НА ЗАКОНОМЕРНОСТИ ДЕФОРМИРОВАНИЯ И ПРОЧНОСТЬ БЕТОНА
4. ЗАКОНОМЕРНОСТИ ДЕФОРМИРОВАНИЯ И РАЗРУШЕНИЯ СТРУКТУРЫ БЕТОНА ПРИ СЛОЖНЫХ НАПРЯЖЕННЫХ СОСТОЯНИЯХ
Г л а в a III. ПРОЧНОСТНЫЕ ХАРАКТЕРИСТИКИ БЕТОНА ПРИ КРАТКОВРЕМЕННОМ СТАТИЧЕСКОМ НАГРУЖЕНИИ
2. ПРОЧНОСТЬ ПРИ ОСЕВОМ РАСТЯЖЕНИИ
3. ПРОЧНОСТЬ НА РАСТЯЖЕНИЕ ПРИ ИЗГИБЕ И РАСКАЛЫВАНИИ
4. НОРМАТИВНЫЕ И РАСЧЕТНЫЕ СОПРОТИВЛЕНИЯ ВЫСОКОПРОЧНЫХ БЕТОНОВ
Глава IV. ПРОЧНОСТНЫЕ ХАРАКТЕРИСТИКИ БЕТОНА ПРИ МНОГОКРАТНОМ И ДЛИТЕЛЬНОМ НАГРУЖЕНИИ
2. ПРОЧНОСТЬ БЕТОНА ПРИ ДЛИТЕЛЬНОМ НАГРУЖЕНИИ
Г л а в а V. ДЕФОРМАЦИИ БЕТОНА ПРИ КРАТКОВРЕМЕННОМ НАГРУЖЕНИИ. МОДУЛЬ УПРУГОСТИ БЕТОНА
1. МЕТОДЫ ОЦЕНКИ МОДУЛЯ УПРУГОСТИ БЕТОНА
4. ОСОБЕННОСТИ ВЗАИМОСВЯЗИ МОДУЛЯ УПРУГОСТИ И ПРОЧНОСТИ БЕТОНА
5. НЕКОТОРЫЕ ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО НОРМИРОВАНИЮ УПРУГИХ СВОЙСТВ ВЫСОКОПРОЧНОГО БЕТОНА
6. ПРЕДЕЛЬНАЯ ДЕФОРМАТИВНОСТЬ БЕТОНА ПРИ КРАТКОВРЕМЕННОМ НАГРУЖЕНИИ
Глава VI. ДЕФОРМАЦИИ БЕТОНА ПРИ ДЛИТЕЛЬНОМ НАГРУЖЕНИИ. ПОЛЗУЧЕСТЬ БЕТОНА
1. ФАКТОРЫ, ВЛИЯЮЩИЕ НА ПОЛЗУЧЕСТЬ БЕТОНА
2. ХАРАКТЕР ВЗАИМОСВЯЗИ МЕЖДУ ПОЛЗУЧЕСТЬЮ И ПРОЧНОСТЬЮ БЕТОНА
3. АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ СВЯЗЕЙ ПОЛЗУЧЕСТИ И ПРОЧНОСТИ ТЯЖЕЛОГО БЕТОНА НА ОСНОВЕ ВЫРАЖЕНИЙ
4. О ВЛИЯНИИ ПОДВИЖНОСТИ БЕТОННОЙ СМЕСИ НА ПОЛЗУЧЕСТЬ ВЫСОКОПРОЧНОГО БЕТОНА
5. ОЦЕНКА СВОЙСТВ ПОЛЗУЧЕСТИ ВЫСОКОПРОЧНЫХ БЕТОНОВ ПРИ ПРОЕКТИРОВАНИИ КОНСТРУКЦИЙ
6. ОСОБЕННОСТИ ДЕФОРМИРОВАНИЯ ВЫСОКОПРОЧНОГО БЕТОНА В НЕЛИНЕЙНОЙ ОБЛАСТИ
Г л а в а VII. СОБСТВЕННЫЕ ДЕФОРМАЦИИ БЕТОНА. УСАДКА БЕТОНА
1. ФАКТОРЫ, ВЛИЯЮЩИЕ НА ВЕЛИЧИНУ УСАДКИ БЕТОНА
2. О СВЯЗИ ДЕФОРМАЦИЙ УСАДКИ С ВЛАГОФИЗИЧЕСКИМИ ПРОЦЕССАМИ В БЕТОНЕ
3. УСАДКА БЕТОНОВ РАЗНОЙ ПРОЧНОСТИ
4. ПОДВИЖНОСТЬ БЕТОННОЙ СМЕСИ И УСАДКА ВЫСОКОПРОЧНОГО БЕТОНА
5. ПРАКТИЧЕСКИЙ МЕТОД ПРОГНОЗИРОВАНИЯ ДЕФОРМАЦИЙ УСАДКИ ВЫСОКОПРОЧНЫХ БЕТОНОВ
Глава VIII. ИЗМЕНЕНИЕ ВО ВРЕМЕНИ ПРОЧНОСТНЫХ И ДЕФОРМАТИВНЫХ СВОЙСТВ БЕТОНА
1. ОЦЕНКА РОСТА ВО ВРЕМЕНИ ПРОЧНОСТНЫХ ХАРАКТЕРИСТИК БЕТОНА
2. ВЛИЯНИЕ СТАРЕНИЯ БЕТОНА НА ЕГО ДЕФОРМАТИВНЫЕ СВОЙСТВА
Г л а в а IX. ПРОБЛЕМЫ ДОЛГОВЕЧНОСТИ ВЫСОКОПРОЧНОГО БЕТОНА
1. СТОЙКОСТЬ БЕТОНА В АГРЕССИВНЫХ СРЕДАХ
Глава X. ТЕХНИКО-ЭКОНОМИЧЕСКАЯ ЭФФЕКТИВНОСТЬ ВЫСОКОПРОЧНЫХ БЕТОНОВ
2. ОПРЕДЕЛЕНИЕ ПОДВИЖНОСТИ РАСТВОРНОЙ СМЕСИ
3. ОПРЕДЕЛЕНИЕ ПЛОТНОСТИ РАСТВОРНОЙ СМЕСИ
4. ОПРЕДЕЛЕНИЕ РАССЛАИВАЕМОСТИ РАСТВОРНОЙ СМЕСИ
5. ОПРЕДЕЛЕНИЕ ВОДОУДЕРЖИВАЮЩЕЙ СПОСОБНОСТИ РАСТВОРНОЙ СМЕСИ
6. ОПРЕДЕЛЕНИЕ ПРОЧНОСТИ РАСТВОРА НА СЖАТИЕ
7. ОПРЕДЕЛЕНИЕ СРЕДНЕЙ ПЛОТНОСТИ РАСТВОРА
8. ОПРЕДЕЛЕНИЕ ВЛАЖНОСТИ РАСТВОРА
9. ОПРЕДЕЛЕНИЕ ВОДОПОГЛОЩЕНИЯ РАСТВОРА
10. ОПРЕДЕЛЕНИЕ МОРОЗОСТОЙКОСТИ РАСТВОРА