Гидратация цемента

  

Вся библиотека >>>

Содержание книги >>>

 

Книги по строительству

 Свойства бетона


Быт. Хозяйство. Строительство. Техника

 

ГЛАВА 1. Портландцемент

 

 

Гидратация цемента

 

При затворении портландцемента водой происходят реакции, обусловливающие твердение цементного теста. В присутствии воды силикаты и алюминаты, перечисленные в табл. 1.1, образуют продукты гидратации, которые постепенно затвердевают и превращаются в цементный камень.

При взаимодействии составляющих цемента с водой идут два процесса. Прежде всего происходит непосредственное присоединение молекул воды, или истинная гидратация. Второй процесс характерен взаимодействием минералов цемента с водой с их разложением — гидролиз.

Обычно применяют термин «гидратация» ко всем типам реакций цемента с водой, т. е. как к истинной гидратации, так и к гидролизу.

Ле Шателье около 80 лет назад впервые установил, что при одинаковых условиях продукты гидратации цемента имеют тот же химический состав, что и продукты гидратации его отдельных составляющих. Позже это было подтверждено Стейнором, а также Боггом и Лерчем, хотя и с оговоркой, что продукты реакции могут воздействовать друг на на друга или даже взаимодействовать друг с другом в системе. Силикаты кальция — основные составляющие цемента, поэтому физические свойства цемента во время гидратации определяются поведением каждого из этих составляющих в отдельности.

Продукты гидратации цемента характеризуются низкой растворимостью в воде, о чем свидетельствует высокая водостойкость цементного камня. Гидратированные новообразования цемента прочно связываются с непрореагировавшим цементом, однако механизм этой связи пока не ясен. Возможно, что гидратные новообразования создают оболочку, которая растет изнутри под воздействием воды, проникающей через эту оболочку. Или возможно, что растворенные силикаты проникают через оболочку и осаждаются на ней в виде внешнего слоя. И третья возможность: образование и осаждение коллоидного раствора во всей массе после того, как достигнуто насыщение, дальнейшая гидратация продолжается внутри этой структуры.



Каким бы ни был способ осаждения продуктов гидратации, скорость гидратации непрерывно уменьшается, так что даже после длительного времени остается заметное количество негидратированного цемента. Так, например, через 28 суток после затворения водой зерна цемента прогидратировали только на глубину 4ц,. Пауэре подсчитал, что полная гидратация при нормальных условиях возможна только для цементных зерен размером менее 50|л, но при непрерывном размельчении цемента в воде полная гидратация была получена в течение 5 суток.

Микроскопическое исследование гидратированного цемента не подтверждает прохождения воды в глубь зерен цемента и выборочной гидратации наиболее реакционно способных составляющих (например, C3S), которые могут находиться в центре зерна. Поэтому представляется, что гидратация развивается вследствие постепенного уменьшения размеров цементных зерен. Действительно, было обнаружено, что в возрасте нескольких месяцев негидратированные зерна цемента грубого помола содержат как C3S, так и C2S и, возможно, что мелкие частицы C2S гидратируются раньше, чем завершается гидратация крупных частиц C3S.

Различные составляющие цемента обычно присутствуют во всех его зернах, и исследования показали, что оставшиеся зерна цемента после определенного периода гидратации имеют тот же относительный минералогический состав, что и целое зерно до гидратации. В течение первых 24 ч может все же происходить избирательная гидратация.

Основными гидратами являются гидросиликаты кальция и трех-кальциевый гидроалюминат. Полагают, что C4AF гидратируется с образованием трехкальциевого гидроалюмината и аморфной фазы, возможно CaO-Fe2O3-aq. Возможно также, что некоторое количество Fe2O3 присутствует в твердом растворе гидроалюмината кальция1.

Степень гидратации цемента может быть определена различными способами посредством измерения: количества Са (ОН)2 в тесте; тепловыделения при гидратации; удельного веса теста; количества химически связанной воды; количества негидратированного цемента (с помощью рентгеноструктурного анализа), а также косвенного по прочности цементного камня.

    

 «Свойства бетона»       Следующая страница >>>

 

 Смотрите также:

 

Как приготовить бетон и строительные растворы  

Исходные материалы  1.1. Минеральные вяжущие вещества  1.2. Заполнители  1.3. Вода  1.4. Определение потребного количества материалов  Строительные растворы  2.1. Свойства строительных растворов  2.2. Виды строительных растворов  2.3. Приготовление строительных растворов  2.4. Составы  Бетоны  3.1. Виды бетона  3.2. Свойства бетона  3.3. Приготовление бетонного раствора  3.4. Составы  3.5. Шлакобетон  3.6. Опилкобетон

 

Высокопрочный бетон

Глава I. ОСОБЕННОСТИ ТЕХНОЛОГИИ ИЗГОТОВЛЕНИЯ ВЫСОКОПРОЧНЫХ БЕТОНОВ

1. МАТЕРИАЛЫ, ИСПОЛЬЗУЕМЫЕ ДЛЯ ПРИГОТОВЛЕНИЯ БЕТОНА

2. ВЛИЯНИЕ КАЧЕСТВА И ДОЗИРОВКИ СОСТАВЛЯЮЩИХ НА СВОЙСТВА БЕТОНА И БЕТОННОЙ СМЕСИ

3. ПОДБОР СОСТАВА И КОНТРОЛЬ КАЧЕСТВА ВЫСОКОПРОЧНОГО БЕТОНА

4. ПОЛУЧЕНИЕ ВЫСОКОПРОЧНОГО БЕТОНА В ПРОИЗВОДСТВЕННЫХ УСЛОВИЯХ

Глава 2. ВЛИЯНИЕ ИЗМЕНЕНИЯ СТРУКТУРЫ ЗАТВЕРДЕВШЕГО БЕТОНА НА ЕГО МЕХАНИЧЕСКИЕ СВОЙСТВА ПОД ДЕЙСТВИЕМ ВНЕШНИХ ФАКТОРОВ

1. ПРОЧНОСТЬ И ДЕФОРМАЦИИ БЕТОНА

2. ДИАГРАММА СОСТОЯНИЙ БЕТОНА И ПАРАМЕТРИЧЕСКИЕ ТОЧКИ

3. ВЛИЯНИЕ ПАРАМЕТРОВ RT НА ЗАКОНОМЕРНОСТИ ДЕФОРМИРОВАНИЯ И ПРОЧНОСТЬ БЕТОНА

4. ЗАКОНОМЕРНОСТИ ДЕФОРМИРОВАНИЯ И РАЗРУШЕНИЯ СТРУКТУРЫ БЕТОНА ПРИ СЛОЖНЫХ НАПРЯЖЕННЫХ СОСТОЯНИЯХ

Г л а в a III. ПРОЧНОСТНЫЕ ХАРАКТЕРИСТИКИ БЕТОНА ПРИ КРАТКОВРЕМЕННОМ СТАТИЧЕСКОМ НАГРУЖЕНИИ

2. ПРОЧНОСТЬ ПРИ ОСЕВОМ РАСТЯЖЕНИИ

3. ПРОЧНОСТЬ НА РАСТЯЖЕНИЕ ПРИ ИЗГИБЕ И РАСКАЛЫВАНИИ

4. НОРМАТИВНЫЕ И РАСЧЕТНЫЕ СОПРОТИВЛЕНИЯ ВЫСОКОПРОЧНЫХ БЕТОНОВ

Глава IV. ПРОЧНОСТНЫЕ ХАРАКТЕРИСТИКИ БЕТОНА ПРИ МНОГОКРАТНОМ И ДЛИТЕЛЬНОМ НАГРУЖЕНИИ

2. ПРОЧНОСТЬ БЕТОНА ПРИ ДЛИТЕЛЬНОМ НАГРУЖЕНИИ

Г л а в а V. ДЕФОРМАЦИИ БЕТОНА ПРИ КРАТКОВРЕМЕННОМ НАГРУЖЕНИИ. МОДУЛЬ УПРУГОСТИ БЕТОНА

1. МЕТОДЫ ОЦЕНКИ МОДУЛЯ УПРУГОСТИ БЕТОНА

3. АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ ЗАКОНОМЕРНОСТЕЙ СВЯЗИ МЕЖДУ МОДУЛЕМ УПРУГОСТИ И ПРОЧНОСТЬЮ ТЯЖЕЛОГО БЕТОНА

4. ОСОБЕННОСТИ ВЗАИМОСВЯЗИ МОДУЛЯ УПРУГОСТИ И ПРОЧНОСТИ  БЕТОНА

5. НЕКОТОРЫЕ ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО НОРМИРОВАНИЮ УПРУГИХ СВОЙСТВ ВЫСОКОПРОЧНОГО БЕТОНА

6. ПРЕДЕЛЬНАЯ ДЕФОРМАТИВНОСТЬ БЕТОНА ПРИ КРАТКОВРЕМЕННОМ НАГРУЖЕНИИ

Глава VI. ДЕФОРМАЦИИ БЕТОНА ПРИ ДЛИТЕЛЬНОМ НАГРУЖЕНИИ.  ПОЛЗУЧЕСТЬ БЕТОНА

1. ФАКТОРЫ, ВЛИЯЮЩИЕ НА ПОЛЗУЧЕСТЬ БЕТОНА

2. ХАРАКТЕР ВЗАИМОСВЯЗИ МЕЖДУ ПОЛЗУЧЕСТЬЮ И ПРОЧНОСТЬЮ БЕТОНА

3. АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ СВЯЗЕЙ ПОЛЗУЧЕСТИ И ПРОЧНОСТИ ТЯЖЕЛОГО БЕТОНА НА ОСНОВЕ ВЫРАЖЕНИЙ

4. О ВЛИЯНИИ ПОДВИЖНОСТИ БЕТОННОЙ СМЕСИ НА ПОЛЗУЧЕСТЬ  ВЫСОКОПРОЧНОГО БЕТОНА

5. ОЦЕНКА СВОЙСТВ ПОЛЗУЧЕСТИ ВЫСОКОПРОЧНЫХ БЕТОНОВ ПРИ ПРОЕКТИРОВАНИИ КОНСТРУКЦИЙ

6. ОСОБЕННОСТИ ДЕФОРМИРОВАНИЯ ВЫСОКОПРОЧНОГО БЕТОНА В НЕЛИНЕЙНОЙ ОБЛАСТИ

Г л а в а VII. СОБСТВЕННЫЕ ДЕФОРМАЦИИ БЕТОНА. УСАДКА БЕТОНА

1. ФАКТОРЫ, ВЛИЯЮЩИЕ НА ВЕЛИЧИНУ УСАДКИ БЕТОНА

2. О СВЯЗИ ДЕФОРМАЦИЙ УСАДКИ С ВЛАГОФИЗИЧЕСКИМИ ПРОЦЕССАМИ В БЕТОНЕ

3. УСАДКА БЕТОНОВ РАЗНОЙ  ПРОЧНОСТИ

4. ПОДВИЖНОСТЬ БЕТОННОЙ СМЕСИ И УСАДКА ВЫСОКОПРОЧНОГО БЕТОНА

5. ПРАКТИЧЕСКИЙ МЕТОД ПРОГНОЗИРОВАНИЯ  ДЕФОРМАЦИЙ УСАДКИ ВЫСОКОПРОЧНЫХ БЕТОНОВ

Глава VIII. ИЗМЕНЕНИЕ ВО ВРЕМЕНИ ПРОЧНОСТНЫХ И ДЕФОРМАТИВНЫХ   СВОЙСТВ БЕТОНА

1. ОЦЕНКА РОСТА ВО ВРЕМЕНИ ПРОЧНОСТНЫХ ХАРАКТЕРИСТИК БЕТОНА

2. ВЛИЯНИЕ СТАРЕНИЯ БЕТОНА НА ЕГО ДЕФОРМАТИВНЫЕ СВОЙСТВА

Г л а в а IX. ПРОБЛЕМЫ ДОЛГОВЕЧНОСТИ ВЫСОКОПРОЧНОГО БЕТОНА

1. СТОЙКОСТЬ БЕТОНА В АГРЕССИВНЫХ СРЕДАХ

2. МОРОЗОСТОЙКОСТЬ БЕТОНА

Глава X. ТЕХНИКО-ЭКОНОМИЧЕСКАЯ ЭФФЕКТИВНОСТЬ ВЫСОКОПРОЧНЫХ БЕТОНОВ

 

Растворы строительные

1. ОБЩИЕ ТРЕБОВАНИЯ

 2. ОПРЕДЕЛЕНИЕ ПОДВИЖНОСТИ РАСТВОРНОЙ СМЕСИ

3. ОПРЕДЕЛЕНИЕ ПЛОТНОСТИ РАСТВОРНОЙ СМЕСИ

4. ОПРЕДЕЛЕНИЕ РАССЛАИВАЕМОСТИ РАСТВОРНОЙ СМЕСИ

5. ОПРЕДЕЛЕНИЕ ВОДОУДЕРЖИВАЮЩЕЙ СПОСОБНОСТИ РАСТВОРНОЙ СМЕСИ

6. ОПРЕДЕЛЕНИЕ ПРОЧНОСТИ РАСТВОРА НА СЖАТИЕ

7. ОПРЕДЕЛЕНИЕ СРЕДНЕЙ ПЛОТНОСТИ РАСТВОРА

8. ОПРЕДЕЛЕНИЕ ВЛАЖНОСТИ РАСТВОРА

9. ОПРЕДЕЛЕНИЕ ВОДОПОГЛОЩЕНИЯ РАСТВОРА

10. ОПРЕДЕЛЕНИЕ МОРОЗОСТОЙКОСТИ РАСТВОРА

 

Смеси бетонные