Строительство. Бетоны |
Заполнители бетона |
|
• Теплопроводность — одно из важнейших свойств бетона, применяемого в ограждающих конструкциях. Чем легче бетон, тем, как правило, меньше его теплопроводность, поскольку уменьшение плотности бетона связано с повышением пористости, т. е. с вовлечения в объем бетона воздуха, являющегося в небольших порах прекрасным теплоизолятором. Теплопроводность бетона в значительной мере определяется видом используемого заполнителя. Развитие производства пористых заполнителей для легких бетонов сделало возможным массовое применение легкобетонных стеновых панелей наружных стен в жилищном строительстве, теплоизоляционных и конструкционно-теплоизоляционных легких бетонов различного назначения. Расчетная теплопроводность керамзитобетона при плотности 1000 кг/м3 составляет 0,41 Вт/(м-°С), что в 2 раза меньше теплопроводности кирпичной кладки, а при плотности 1200 кг/м3 — 0,52 Вт/(м-°С) и т. д. Имеется определенная общая зависимость между плотностью и теплопроводностью, однако возможны и существенные отклонения от этой зависимости. Известно, что аморфные материалы менее теплопроводны, чем кристаллические. Так, обычное силикатное стекло с плотностью 2500 кг/м3 имеет теплопроводность примерно 0,8 Вт/(м-°С), т. е. такую же, как у кирпича, плотность которого лишь 1700 кг/м3. Теплопроводность обычного бетона с плотностью, близкой к плотности стекла, составляет примерно 1,4 Вт/(м-°С). Поэтому с точки зрения требований теплоизоляции предпочтительны заполнители, в составе которых больше стекла, например шлаковая пемза, получаемая быстрым охлаждением поризованно-го расплава (при быстром охлаждении расплава кристаллизация не происходит). Действительно, исследования показали сравнительно малую теплопроводность шлакопемзобетона.
Зависимость теплопроводности бетона от теплопроводности его составляющих исследована С. М. Ицковичем теоретически на модели. В результате получены две формулы, в сущности аналогичные формулам Формулы дают при расчете близкие результаты, охватывающие область возможных реальных значений теплопроводности бетона на данном заполнителе. Входящий в эти формулы показатель теплопроводности заполнителя К3 определяется испытанием в бетоне при каких-либо зафиксированных параметрах Я,р ицс расчетом по формуле (2.12). По опытным данным керамзитовый гравий с плотностью зерен р3=0,79 г/см3 имел теплопроводность в бетоне Я3=0,29 Вт/(м-°С), аглопоритовый щебень при р3= 1,34 г/см3 — 0,56 Вт/(м-°С). В. Г. Довжик исследовал подобным образом керамзит различных заводов. Теплопроводность зерен керамзита с плотностью 0,49... 1,14 г/см3 составила 0,11.„0,4 Вт/(м-°С). Подтвердив в общем известную закономерность роста теплопроводности материала с увеличением его плотности, это исследование вместе с тем показало, что в конкретных случаях наблюдаются большие отклонения от нее, главным образом из-за различий состава (содержания стеклофазы и кристаллических минералов). Поэтому нередко практикуемое ориентировочное определение теплопроводности бетона или заполнителя по плотности может привести к ошибочным решениям. На теплопроводность легкого бетона неплотной структуры (крупнопористого или малопесчаного) существенное влияние оказывает гранулометрический состав заполнителей, поскольку от него зависит характер межзерновой пористости. Из двух видов бетона с одинаковым общим объемом пор мелкопористый, как правило, будет иметь меньшую теплопроводность, так как эффективная теплопроводность воздуха, включающая и передачу излучением, зависит от размера пор (по А. Миснару) Теплопроводность бетона зависит также от его влажности. Теплопроводность воды составляет 0,58 Вт/(м-°С), что во много раз больше теплопроводности воздуха. Поэтому, если поры бетона вместо воздуха заполняет вода, то теплопроводность его резко увеличивается, теплопотери через увлажненные ограждающие конструкции возрастают, а в зимний период возможно их промерзание. Теплопроводность льда составляет около 1,8 Вт/(м-°С), таким образом с промерзанием увлажненного бетона его теплопроводность еще более увеличивается. Эксплуатационная влажность легкого бетона зависит от равновесной влажности примененного пористого заполнителя в условиях сорбции (т. е. поглощения влаги из окружающего воздуха) и десорбции (высыхания переувлажненного заполнителя). Десорб-ционная влажность, как правило, выше сорбционной, однако для таких заполнителей, как керамзит, аглопорит, пемза, она при относительной влажности воздуха до 60... 80% составляет лишь сотые доли процента и не имеет существенного значения. Такие заполнители, как древесные опилки, могут иметь равновесную влажность порядка 15%! а это сказывается на теплопроводности. При приготовлении бетонной смеси и пропаривании изделий пористые заполнители обычно переувлажняются. Поэтому большое значение имеет скорость высыхания бетона, связанная с влагоотдачей заполнителя. Некоторые заполнители отличаются замедленной влагоотдачей. К их числу относится, в частности, мелкий вспученный перлит. |
К содержанию: Заполнители для бетона
Смотрите также:
Полимерные бетоны Высокопрочный бетон Растворы строительные Смеси бетонные Бетоны Монолитный бетон и железобетон Отделочные и облицовочные материалы Строительные материалы и изделия Строительные материалы Стройматериалы
Заполнители органические. Древесные заполнители
О заполнителях, наполнителях и добавках
О заполнителях из камыша и костры и о полимерных заполнителях
Минеральные порошки-заменители цемента (активные минеральные добавки и наполнители)
Методы выдерживания бетона на морозе
Добавки в бетонные смеси. Добавки пластифицирующего действия
Регулирующие схватывание бетонных смесей и твердение бетонов
Регулирующие пористость бетонной смеси и бетона
Придающие бетону специальные свойства
Комплексные добавки-модификаторы
Изменение насыпной плотности песка в зависимости от его влажности
Цементы. Цементы на основе портландцементного клинкера. Портландцемент и шлакопортландцемент
Цемент для строительных растворов
Тенденции в области развития нормативной базы цементной промышленности
Общие положения по расчету состава бетона
ПРИГОТОВЛЕНИЕ БЕТОННЫХ СМЕСЕЙ. Свойства бетонных смесей
1.2. ПОЛУЧЕНИЕ ПОРТЛАНДЦЕМЕНТА
1.4.3. Трехкальциевый алюминат
1.5.2. Трехкальциевый алюминат
3. ВОДОПОНИЗИТЕЛИ И ЗАМЕДЛИТЕЛИ СХВАТЫВАНИЯ
3.1.2. Химический состав и производство добавок-водопонизителей — замедлителей схватывания
3.1.2.2. Гидроксикарбоновые кислоты
3.2. ПРИГОТОВЛЕНИЕ И ИСПОЛЬЗОВАНИЕ ВОДОПОНИЗИТЕЛЕЙ-ЗАМЕДЛИТЕЛЕЙ
3.2.2. Технология введения добавок
3.2.3. Условия хранения и время жизни добавок
4.1.1. Классификация суперпластификаторов
4.1.2. Пластифицирующее действие
4.1.3. Области применения и ограничения
4.2. ДЕЙСТВИЕ СУПЕРПЛАСТИФИКАТОРОВ НА ЦЕМЕНТНЫЕ ПАСТЫ
4.2.3. Дзета-потенциал (£-потенциал)
4.2.4. Гидратация цемента и микроструктура цементного камня
4.2.5. Оценка качества добавок
6.3.3. Обожженные глины и сланцы
6.4.1.3. Кремнезем, осажденный из газовой фазы – белая сажа
8.2. ПРИГОТОВЛЕНИЕ И ПРИМЕНЕНИЕ ПРОТИВОМОРОЗНЫХ ДОБАВОК
9.3.6.2. Состав бетонной смеси
9.4. ДОБАВКИ, ПОНИЖАЮЩИЕ ВЛАГО-И ВОДОПРОНИЦАЕМОСТЬ
9.5. ДОБАВКИ, ЗАЩИЩАЮЩИЕ ОТ ВОЗДЕЙСТВИЯ ЩЕЛОЧЕЙ НА ЗАПОЛНИТЕЛИ
9.5.2. Виды химических добавок
9.6. ДОБАВКИ, ОБЛЕГЧАЮЩИЕ ПОДАЧУ БЕТОНА И РАСТВОРА НАСОСАМИ
9.8. БАКТЕРИЦИДНЫЕ, ФУНГИЦИДНЫЕ И ИНСЕКТИЦИДНЫЕ ДОБАВКИ
9.10. ДОБАВКИ ДЛЯ ТОРКРЕТИРОВАНИЯ БЕТОНА