Быт. Хозяйство. Строительство. Техника |
Строительные материалы |
|
Портландцемент и его разновидности являются основным вяжущим материалом в современном строительстве. В СССР его производство составляет около 65 % от выпуска всех цементов. Портландцемент — продукт тонкого измельчения клинкера, получаемого обжигом до спекания, т. е. частичного плавления сырьевой смеси, обеспечивающей преобладание в нем высокоосновных силикатов кальция (70...80 %). Для регулирования схватывания и некоторых других свойств при помоле клинкера в цемент добавляют небольшое количество гипса (1,5...3,5 %). В соответствии с ГОСТ 10178—85 за таким бездобавочным цементом сохранено название портландцемент (ПЦ-ДО). Ш Сырье и производство. Для получения доброкачественного портландцемента химический состав клинкера, а следовательно, и состав сырьевой смеси должны быть устойчивы. Многочисленные исследования и практический опыт показывают, что элементарный химический состав клинкера должен находиться в следующих пределах (% по массе): СаО — 63...66; SiO2 — 21...24; А12О3 — 4...8; Ре2Оз — 2...4, их суммарное количество составляет 95... ...97 %. Следовательно, для производства портландцемента следует применять такие сырьевые материалы, которые содержат много карбоната кальция и алюмосиликатов (известняки, глины, известковые мергели). Чаще используют искусственные сырьевые смеси из известняка или мела и глинистых пород при соотношении между ними в сырьевой шихте примерно 3:1 (% по массе): СаСО3 — 75...78 и глинистого вещества — 22...25. Вместо глины или для частичной ее замены используют также отходы различных производств (доменные шлаки, нефелиновый шлам и т. п.). Нефелиновый шлам, получающийся при производстве глинозема, уже содержит 25...30 % SiOЈ и 50...55 % СаО; достаточно к нему добавить 15...20 % известняка, чтобы получить сырьевую смесь. При этом производительность печей повысится примерно на 20 %, а расход топлива снизится на 20...25 %. Для обеспечения нужного химического состава сырьевой смеси применяют корректирующие добавки, содержащие недостающие оксиды. Например, количество S1O2 повышают, добавляя в сырьевую смесь трепел, опоку. Добавление колчеданных огарков увеличивает содержание Fe2O3.
В качестве топлива используют природный газ, реже мазут и твердое топливо в виде угольной пыли. Стоимость топлива составляет до 26 % себестоимости готового цемента, поэтому на цементных заводах много внимания уделяется его экономии. Технология портландцемента в основном сводится к приготовлению сырьевой смеси надлежащего состава, ее обжигу до спекания (получают клинкер) и помолу в тонкий порошок. Сырьевую смесь приготовляют сухим или мокрым способом (см. 5.2). В соответствии с этим различают и способы производства цемента — сухой и мокрый. В СССР преобладает мокрый способ производства цемента, но все шире внедряется сухой. Важнейшим преимуществом сухого способа производства является не только снижение расхода теплоты на обжиг в 1,5...2 раза, чем при мокром, но и более высокие удельные съемы в печах сухого способа. Обжиг сырьевой смеси чаще осуществляют во вращающихся печах, но иногда (при сухом способе) в шахтных. Вращающаяся печь (5.2) представляет собой сварной стальной барабан длиной до 185 м и более, диаметром до 5...7 м, футерованный изнутри огнеупорными материалами. Барабан уложен на роликах под углом 3...4° к горизонту и медленно вращается вокруг своей оси. Благодаря этому сырьевая смесь, загруженная в верхнюю часть печи, постепенно перемещается к нижнему концу, куда вдувают топливо, продукты горения которого просасываются навстречу сырьевой смеси и обжигают ее. Характер процессов, протекающих при обжиге сырьевой смеси, приготовленной по сухому и мокрому способам, по существу, одинаков и определяется температурой и временем нагревания материала в печи. Рассмотрим эти процессы. В зоне сушки поступающая в верхний конец печи сырьевая смесь встречается с горячими газами и постепенно при повышении температуры с 70 до 200 °С (зона сушки) подсушивается, превращаясь в комья, которые при перекатывании распадаются на более мелкие гранулы. По мере перемещения сырьевой смеси вдоль печи происходит дальнейшее постепенное ее нагревание, сопровождаемое химическими реакциями. В зоне подогрева при 200...700 °С сгорают находящиеся в сырье органические примеси, удаляется химически связанная вода из глинистых минералов и образуется безводный каолинит Al2O3-2SiO2. Подготовительные зоны (сушки и подогрева) при мокром способе производства занимают 50...60 % длины печи, при сухом же способе подготовки сырья длина печи сокращается за счет зоны сушки. В зоне декарбонизации при температуре 700... s..l 100 °С происходит процесс диссоциации карбонатов кальция и магния на CaO, MgO и СО2, алюмосиликаты глины распадаются на отдельные оксиды SiO2, A12O3 и Fe2O3 с сильно разрыхленной структурой. Термическая диссоциация СаСО3 — это эндотермический процесс, идущий с большим поглощением теплоты (1780 кДж на 1 кг СаСО3), поэтому потребление теплоты в третьей зоне печи наибольшее. В этой же зоне оксид кальция в твердом состоянии вступает в реакцию с продуктами распада глины с образованием низкоосновных силикатов, алюминатов и ферритов кальция (2CaO-SiO2, СаО-АШ3, 2CaO-Fe2O3). В зоне экзотермических реакций обжигаемая масса, передвигаясь, быстро нагревается от 1100 до 1300°С, при этом образуются более основные соединения: трех-кальциевый алюминат ЗСаО-А12О3(С3А), четырехкальциевый алюмоферрит 4CaO-Al2O3-Fe2O3(C4AF), но часть оксида кальция еще остается в свободном виде. Обжигаемый материал агрегируется в гранулы. В зоне спекания при 1300...1450 °С обжигаемая смесь частично расплавляется. В расплав переходят С3А, C4AF, MgO и все легкоплавкие примеси сырьевой смеси. По мере появления расплава в нем растворяются C2S и СаО и, вступая во взаимодействие друг с другом, образуют основной минерал клинкера — трехкальциевый силикат 3CaO-SiO2(C3S), который плохо растворяется в расплаве и вследствие этого выделяется из расплава в виде мелких кристаллов, а обжигаемый материал спекается в кусочки размером 4...25 мм, называемые клинкером. В зоне охлаждения (заключительная стадия обжига) температура клинкера понижается с 1300 до 1000 °С, происходит окончательная фиксация его структуры и состава, включающего C3S, C2S, C3A, C4AF, стекловидную фазу и второстепенные составляющие. По выходе из печи клинкер необходимо быстро охладить в специальных холодильниках, чтобы предотвратить образование в нем крупных кристаллов и сохранить в не-закристаллизованном виде стекловидную фазу. Без быстрого охлаждения клинкера получится цемент с пониженной реакционной способностью по отношению к воде. После выдержки на складе (1...2 недели) клинкер превращают в цемент путем помола его в тонкий порошок, добавляя небольшое количество двуводного гипса. Готовый портландцемент направляют для хранения в силосы и далее на строительные объекты. Сухой способ производства цемента значительно усовершенствован. Наиболее энергоемкий процесс — декарбонизация сырья — вынесен из вращающейся печи в специальное устройство — декарбонизатор, в котором он протекает быстрее и с использованием теплоты отходящих газов (5.3). По этой технологии сырьевая мука сначала поступает не в печь, а в систему циклонных теплообменников, где нагревается отходящими газами и уже горячей подается в декарбонизатор. В декарбонизаторе сжигают примерно 50 % топлива, что позволяет почти полностью завершить разложение СаСО3. Подготовленная таким образом сырьевая мука подается в печь, где сжигается остальная часть топлива и происходит образование клинкера. Это позволяет повысить производительность технологических линий, снизить топливно-энергетические ресурсы, примерно вдвое сократить длину вращающейся печи, соответственно улучшить компоновку завода и занимаемой им земельной территории. В СССР создана низкотемпературная солевая технология производства цемента, базирующаяся на открытии советских ученых. Сущность открытия заключается в установлении нового явления — образования высокоосновного силиката кальция — алинита, близкого по составу к алиту в области температур 9ОО...11ОО°С, т. е. значительно ниже температур кристаллизации трехкальциевых силикатов — алитов. Алинит, являющийся основной вяжущей фазой портландцементных клинкеров нового типа, обусловливает их высокую гидравлическую активность. Вхождение анионов хлора в структуру является обязательным условием образования алинита и клинкеров нового типа. Введение в шихту, например, 10... 12 % СаС12 сопровождается образованием хлоркальциевого расплава при чрезвычайно низких температурах (600...800 С), что смещает все основные реакции образования минералов в область температур 1000... 1100 "С и позволяет получать клинкер при пониженных температурах. Внедрение новой технологии позволит сократить удельные расходы топлива, резко повысить производительность печей и помольного оборудования. |
Содержание книги: «Стройматериалы»
Смотрите также:
Вяжущие вещества — основа современного строительства
Краткие сведения о развитии производства минеральных вяжущих веществ
Классификация и номенклатура вяжущих веществ, исходные материалы для их производства, добавки
ЧАСТЬ 1. ВЯЖУЩИЕ ВЕЩЕСТВА ВОЗДУШНОГО ТВЕРДЕНИЯ
ГИПСОВЫЕ И АНГИДРИТОВЫЕ, ВЯЖУЩИЕ ВЕЩЕСТВА И СЫРЬЕ ДЛЯ ИХ ПРОИЗВОДСТВА
Модификации водного и безводного сульфата кальция
Технология гипсовых вяжущих а- и Р-модификаций полугидрата сульфата кальция из природного сырья
Получение высокопрочного гипса варкой в окидких средах
Охрана труда и автоматизация производства на гипсовых заводах
Схватывание и твердение полуводного гипса
Свойства гипсовых вяжущих и области их применения
Высокообжиговое ангидритовое вяжущее (эстрих-гипс)
Гипсовые и ангидритовые вяжущие из побочных материалов химической промышленности
ГЛАВА 2. ИЗВЕСТЬ СТРОИТЕЛЬНАЯ ВОЗДУШНОГО ТВЕРДЕНИЯ
Гидратная известь (пушонка) и известковое тесто
Охрана труда на известковых заводах
Свойства воздушной извести и области ее применения
ГЛАВА 3. МАГНЕЗИАЛЬНЫЕ ВЯЖУЩИЕ ВЕЩЕСТВА. Каустический магнезит
Затворители для каустического магнезита
ЧАСТЬ 2. ГИДРАВЛИЧЕСКИЕ ВЯЖУЩИЕ ВЕЩЕСТВА
ГЛАВА 4. ГИДРАВЛИЧЕСКАЯ ИЗВЕСТЬ И РОМАНЦЕМЕНТ. Гидравлическая известь
Свойства гидравлической извести
Клинкер, его химический и минеральный состав
Алюмоферритная и алюминатная фаза промежуточного вещества в клинкере
Классификация клинкеров и номенклатура портландцементов
ГЛАВА 6. ТЕХНОЛОГИЯ ПОРТЛАНДЦЕМЕНТА. Сырьевые материалы и топливо
Мергели. Глины. Корректирующие добавки
Мокрый способ производства клинкера
Способы повышения эффективности изготовления клинкера мокрым способом
Сухой способ производства клинкера
Помольные установки и процессы измельчения
Хранение, упаковка и отправка цемента
Охрана труда на цементных заводах
Повышение эффективности производства и качества продукции
ГЛАВА 7. ТВЕРДЕНИЕ ПОРТЛАНДЦЕМЕНТА И ЕГО СВОЙСТВА
Теория твердения портландцемента при его взаимодействии с водой
ГЛАВА 8. СТРУКТУРА И СВОЙСТВА ЦЕМЕНТНОГО ТЕСТА И ЗАТВЕРДЕВШЕГО ЦЕМЕНТНОГО КАМНЯ
Седиментационные явления в тесте
Тепловыделение при взаимодействии цемента с водой
Изменения в содержании твердой фазы цементного теста и камня при твердении. Контракция и пористость
Структура цементного теста и камня
Формы связи воды в цементном тесте и камне
Щелочность жидкой фазы цементного камня и ее значение для защиты стали от коррозии
ГЛАВА 9. ФИЗИЧЕСКИЕ И МЕХАНИЧЕСКИЕ СВОЙСТВА ЦЕМЕНТОВ
Водопотребность и нормальная густота теста
Равномерность изменения объема
Активность и прочность портландцементов
Влияние температуры и добавок на скорость твердения портландцементов
Усадка и набухание цементного камня при изменении его влажности
Стойкость цементного камня при переменном увлажнении и высушивании
Агрессивное действие на цемент некоторых органических веществ и защита бетона
Физическая коррозия цементного камня
Жаростойкость и огнеупорность цементов
ГЛАВА 11. РАЗНОВИДНОСТИ ПОРТЛАНДЦЕМЕНТОВ
Быстротвердеющие портландцементы
Портландцементы с пластифицирующими и гидрофобизирующими добавками
Сульфатостойкие портландцементы
Белый и цветные портландцементы
Портландцементы для бетона дорожных и аэродромных покрытий
Портландцемент для производства асбестоцементных изделий
Портландцементы для строительных растворов и бетонов автоклавного твердения
ГЛАВА 12. АКТИВНЫЕ МИНЕРАЛЬНЫЕ ДОБАВКИ И ПУЦЦОЛАНОВЫЕ ЦЕМЕНТЫ. Активные минеральные добавки
Искусственные кислые активные минеральные добавки
Пуццолановые цементы. Пуццолановый портландцемент
Свойства пуццоланового портландцемента
Равномерность изменения объема пуццоланового портландцемента
Усадка и набухание пуццоланового портландцемента
Прочность пуццоланового портландцемента
Воздухостойкость. Морозостойкость пуццоланового портландцемента
Известесодержащие вяжущие вещества
ГЛАВА 13. ШЛАКИ И ШЛАКОВЫЕ ЦЕМЕНТЫ
Химический состав доменных шлаков
Минеральный состав и структура доменных шлаков
Гидравлические свойства доменных шлаков
Передельные шлаки черной металлургии
Электротермофосфорные гранулированные шлаки
Шлаковые цементы. Шлакопортландцемент
Области применения шлакопортландцемента
Шлаковые вяжущие вещества для бетонов автоклавного твердения
Известково-белитовое (нефелиновое) вяжущее
ГЛАВА 14. ГЛИНОЗЕМИСТЫЙ ЦЕМЕНТ И ЕГО РАЗНОВИДНОСТИ. Состав глиноземистого цемента
Производство глиноземистого цемента
Твердение глиноземистого цемента
Свойства и области применение глиноземистого цемента
ГЛАВА 15. СМЕШАННЫЕ ВЯЖУЩИЕ ВЕЩЕСТВА СО СПЕЦИАЛЬНЫМИ СВОЙСТВАМИ
Гипсоцементно-пуццолановые вяжущие вещества - ГЦПВ
ГЛАВА 16. НЕОРГАНИЧЕСКИЕ ВЯЖУЩИЕ С ДОБАВКАМИ ПОЛИМЕРНЫХ ВЕЩЕСТВ