Строительство. Тепло- и гидроизоляция |
Гидроизоляция зданий и сооружений |
|
Транспортные тоннели. Самым распространенным видом подземных сооружений, гидроизоляция которых разработана наиболее тщательно [31, 60], являются тоннели метрополитенов. Этот вопрос выходит за рамки настоящей монографии, но мы все же кратко на нем остановимся, ибо он важен для уяснения принципов проектирования гидроизоляции подземных сооружений. Чаще всего в тоннелях осуществляется тюбинговая облицовка из высокоплотных бетонов марок 600 и 700. В 1956 г. П. Д. Глебовым и Н. С. Покровским была обоснована возможность применения железобетонных тюбингов из бетонов марок 250 и 350, пропитанных битумом и петролатумом [Сб. Мосмет-ростроя № 4(8), 1957], для условий химически агрессивных грунтовых вод, однако в настоящее время тюбинговые облицовки не имеют особой гидроизоляции. В связи с тем, что такие облицовки допускают протечки, на всех эскалаторных и станционных тоннелях устраивают подвесные шатры и облицовки из асбесто- и армоцементных элементов, покрывая их с обратной стороны окрасочной гидроизоляцией; просочившуюся через тюбинговую обделку воду отводят дренажом. Тюбинговые облицовки могут быть усовершенствованы путем установки на стяжные болты уплотняющих асбобитум-ных шайб, предложенных Мосметростроем. Главленинград-инжстрой ставит в канализационных коллекторах уплотняющие прокладки из полимербитумного герметика битэп, разработанного ВНИИГом [65], причем с внутренней стороны тюбинговая облицовка покрывается торкретом и шприц-бетоном. Совершенствованию тюбинговых облицовок уделяется внимание и за рубежом. Так, в Японии для обеспечения водонепроницаемости болтовых соединений тюбингов на болты надевают пластмассовые втулки, которые при затягивании болтов расплющиваются и уплотняют стык (японский патент № 50-3580, 1975 г.).
В транспортных тоннелях, проходимых открытым способом, прибегают к обычным средствам гидроизоляции (см. § 4.2), однако динамические условия работы обделок таких тоннелей вынуждают применять оклеечную гидроизоляцию как наиболее трещиноустойчивую. Например, Мосметрострой, широко использующий оклеечную гидроизоляцию, вначале применял гидроизоляцию из трех-четырех слоев гнилостойкого толя, а затем специальные рулонные материалы: борулин и металлоизол на алюминиевой фольге. В последнее время им осуществляется весьма сложный комплекс гидроизоляционных мероприятий: уплотнение стыков между тюбингами, сбалчивание их на асбо-битумных шайбах, чеканка стыков освинцованным шнуром и дополнительное их уплотнение дивинилстирольным герметикой ТЭП-4, причем на участках открытой проходки железобетонная облицовка тоннеля изолируется оклеечной гидроизоляцией из трех-четырех слоев гидростеклоизола (см. табл. 1.16), наклеиваемого на резинобитумной мастике (Сб. МДНТП имени Ф. Э. Дзержинского, 1977). Наиболее наглядное представление о развитии способов гидроизоляции тоннелей дает Берлинский метрополитен. Вначале, в 1897 г., здесь применили пропитанный войлок, наклеенный на дегте с прокладкой листов материала типа «текстолит»; в 1898—1931 гг. — оклеечную гидроизоляцию из толя на сложных клебемассах из битумов и дегтей с добавками до 50% три-нидадского асфальта и мексиканского природного битума; в 1946—1953 гг. — из усиленного рубероида и алюминиевой фольги типа «алькута», причем на вертикальные участки стен наклеивали четыре-пять слоев рулонного материала и семь-во-семь слоев битумной клебемассы, с защитой кирпичной или бетонной стенкой толщиной 100—120 мм; все это укладывалось поверх мощной железобетонной облицовки из плотного бетона. Следует отметить несколько новых и прогрессивных решений гидроизоляции транспортных тоннелей, осуществленных за рубежом. Например, в США, Австрии и Швейцарии на ряде автотранспортных тоннелей применена гидроизоляция из пластифицированного поливинилхлорида; предел прочности его при растяжении составляет 17 МПа, при сжатии—10 МПа, наибольшая растяжимость 400% (Proc. ASCE J. of the constr. div., 1976, v. 102, №C01, p. 111). Пластмассовые листы шириной 50—150 см, толщиной 2 мм сваривали в стыках горячим воздухом с присадочными стержнями, а швы в бетонной обделке уплотняли профильными ПВХ-лентами сложного профиля. Сверху такую гидроизоляцию защищали железобетонной облицовкой, рассчитанной на восприятие внешнего гидростатического давления. Необходимо подчеркнуть высокое качество пластификаторов в поливинилхлориде, что позволяет применять листы и ленты в диапазоне температур от +70 до —40° С и даже после длительного воздействия воды сохранять УОЭС = = 5-10" Ом-см. В Голландии для гидроизоляции тоннелей используют покрытия из горячего асфальта, армированные высокопрочной полиэфирной тканью «структурофос»; в частности, такая гидроизоляция успешно служит для защиты транспортного тоннеля длиной 1 км в Амстердаме, железобетонные секции которого стыковались под водой, причем особо отмечается высокая водонепроницаемость его облицовки («Bitumen, Asphalte u. s. w.», 1968, № 12, S. 497). На транспортном тоннеле под Эльбой в Гамбурге (ФРГ) оклеечная гидроизоляция была выполнена путем окраски полиэфирной смолой, армированной стеклотканью, с дополнительным усилением покрытия над швами медной фольгой толщиной 0,1 мм и покрытием сверху тремя слоями стеклоткани на рези-нобитумной клебемассе с добавкой порошка «пульватекс». В Дании аналогичный тоннель под Лим-фиордом был изолирован листами толщиной 2 мм из бутилкаучука, которые наклеивали на поливинилхлоридно-цементной композиции, причем все гидроизоляционное покрытие состояло всего из одного слоя. На ряде тоннелей в Западной Европе осуществлена гидроизоляция из поливинилхлоридной пленки, причем фирмы, ее выполняющие, гарантируют долговечность более 40 лет при условии ее защиты («Bitumen, Asphalte u. s. w.», 1974, № 1, S. 11). В Ленинграде, по предложению ВНИИГа, на транспортных тоннелях вдоль Невы у мостов Александра Невского и Литейного в 1970—1972 гг. была применена холодная асфальтовая гидроизоляция из мастики хамастИАЦ-15 и БНСХА (см. табл. 1.28), с армированием стеклотканью ( 4.12). Эти покрытия успешно служат почти десять лет над сборными железобетонными элементами подпорных стенок в подъездах к тоннелям. Лишь в одном месте было отмечено отслоение стеклоткани, наклеенной на мастике БНСХА во время морозов [56]. Гидротехнические тоннели. Эти тоннели нуждаются в особо надежной гидроизоляции, так как она подвергается еще и воздействию напора воды изнутри скоростного потока. Кроме того, требуется ее высокая трещиноустойчивость в деформируемых грунтах. На более ранних сооружениях облицовку из армированного бетона покрывали, как правило, гидроизоляцией из торкрета, иногда по сетке [39], но такие покрытия оказывались недостаточно трещиноустоичивыми; например, на некоторых тоннелях были зарегистрированы следующие удельные (на 1 м2 облицовки и 1 м напора) фильтрационные расходы (л/с): Напорный тоннель ДзораГЭС (Грузия) 0,84 » » Храмской ГЭС (Грузия) 0,037 Отводящий тоннель ГЭС Гизельдон (Грузия) 0,035 » » Севанской ГЭС (Армения) 0,16 Опытный штрек отводящего тоннеля Храмской ГЭС ...... 0,10 Напорный тоииель ГЭС Амстэ (Швейцария) 0,06 Штольня № 7 этого тоннеля 0,17 Напорный тоннель ГЭС Барбарине (Швейцария) 1,0 Как видим, фильтрация через такие облицовки недопустимо велика, в связи с чем во всех случаях пришлось провести дорогие цементационные работы. Поэтому тоннели чаще всего защищают оклеечной гидроизоляцией. Гидроизоляция из рулонных материалов требует устройства многослойной облицовки .( 4.13), причем внешняя железобетонная рубашка выполняется из условия восприятия горного давления, а внутренняя — гидростатического напора ( 4.13, а и б), поскольку оклеечная гидроизоляция сама не воспринимает отрывающий напор, а передает его на внутреннюю облицовку. Рассмотрим пример неправильного решения данной проблемы. На построенном в 1937—1938 гг. напорном тоннеле ДзораГЭС с железобетонной облицовкой внутренним диаметром 2,3 м, рассчитанной на восприятие внешнего напора 32,5 м, в 1940 г. было отмечено раскрытие швов и трещин на 3—4 мм, которое усугубилось в 1941 г. смещением отдельных секций на 2 мм со средней скоростью 6,4Х10~9 см/с, в результате чего фильтрационный расход из тоннеля достиг 10 м3/с и потребовался ремонт. С этой целью частично была выполнена металлическая обшивка, а частично — оклеечная гидроизоляция из четырех слоев рулонного материала, наклеенного на битуме БН 70/30; она усилена поверхностной окраской асфальтовой горячей мастикой АМ-40, причем внутри тоннеля оклеечная гидроизоляция была защищена торкретом по сетке, которая, конечно, не могла воспринять внешнее гидростатическое давление свыше 30 м, поэтому даже после столь сложного ремонта удельный фильтрационный расход все же составил 0,025 л/с («Гидротехническое строительство», 1952, № 5). Учитывая этот неудачный опыт, на напорном тоннеле Алма-Атинской ГЭС, где после землетрясения образовались трещины, изнутри была устроена оклеечная гидроизоляция и защищена мощной железобетонной рубашкой, рассчитанной на восприятие внешнего давления воды. Другим примером, свидетельствующим о необходимости тщательного проектирования и выполнения гидроизоляции тоннелей, может служить опыт эксплуатации деривационных галерей Мингечаурской ГЭС ( 4.14). Напорные трубопроводы станции прокладывались в специальных подземных галереях сечением 7,5x7,5 м, объединяющих все шесть трубопроводов в виде монолитного железобетонного массива, проложенного в мягких лёссовых грунтах берега под намывным телом грунтовой плотины ( 4.14, а). Такое расположение галерей потребовало разрезки их частыми деформационными швами, а расчетный напор до 63 м — усиленной гидроизоляции и уплотнения швов сооружения, тем более, что ожидались значительные и неравномерные во времени осадки, которые могли вызвать деформации в швах со скоростью до Ю-5 см/с. По предложению ВНИИГа, была запроектирована сложная система автоматических шпонок, обеспечивающих надежное уплотнение швов путем нагнетания в полости шпонок специально подобранной легкоподвижной мастики (40% битума БН 90/30 и 60% минерального порошка). К сожалению, при строительстве галерей некоторые автоматические шпонки ( 4.14, в) были заполнены нагнетаемым цементным раствором, который при осадках секций водоводов постоянно растрескивался и вызывал интенсивные течи, а в четвертом шве даже привел к выносу 75 м3 грунта из тела плотины, что требовало постоянного ремонта швов путем нагнетания цементного раствора в местах протечек. Наружная гидроизоляция галерей состояла из асфальтовых армированных матов толщиной 5—6 мм, наклеенных в два слоя и защищенных стяжкой из цементного раствора ( 4.14, б); она работала вполне удовлетворительно, однако из-за ее сложности и многодельности на последующих стройках от нее пришлось отказаться. В теле плотины Нурекской ГЭС высотой до 300 м проложены смотровые и цементационные галереи, подвергающиеся действию напора воды до 300 м, давлению грунта до 6 МПа и значительным деформациям при неравномерных осадках тела плотины ( 4.15). Здесь, по предложению НИС Гидропроекта, была применена армированная эпоксидная гидроизоляция ( 4.15, а) из эпоксидно-каменноугольных композиций, технико-экономические характеристики которых приведены в табл. 4.3. Как видим, в данном случае эпоксидная окрасочная гидроизоляция по стоимости и трудоемкости превосходит асфальтовую, что объясняется весьма необычными условиями эксплуатации: высоким напором воды (до 300 м), давлением грунта на гидроизоляционное покрытие до 6 МПа при сдвигающем напряжении до 1 МПа, а также возможным раскрытием трещин и швов до 2 мм («Гидротехническое строительство», 1979, № 3). В таких условиях эпоксидная гидроизоляция может быть заменена лишь стальной обшивкой, стоимость которой при этом достигает 30 руб/м2. В гидротехнических тоннелях необходимо учитывать также интенсивное механическое воздействие наносов и кавитацион-ную эрозию скоростного водного потока. Например, через строительный тоннель Нурекской ГЭС в 1967—1972 гг. пропускали паводки со скоростями потока 16—17 м/с, что привело к частичному разрушению его бетонной облицовки на глубину до 30 см с обнажением зерен заполнителя и арматуры («Энергетическое строительство», 1978, № 11) и потребовало большого ремонта облицовки. Во ВНИИГе и НИС Гидропроекта проводились многолетние исследования антикавитационных полимерных покрытий поскольку было установлено, что пластмассы лучше сопротивляются кавитационной эрозии, чем бетоны, уступая в этом отношении только стальной обшивке [26, 42]. Этими исследованиями было показано, что эпоксидные покрытия лучше других сопротивляются кавитационной эрозии (табл. 4.8), причем оказалось, что наивысшей кавитационной стойкостью обладают эпоксидно-каучуковые покрытия из краски ЭКК-200, т. е. чем выше пластификация покрытия, тем выше его кавитационная стойкость, а старение покрытия увеличивает его Жесткость и снижает стойкость. Следует отметить, что увеличение толщины пластифицированных покрытий повышает их кавитационную стойкость, а жестких покрытий, наоборот, — снижает, приводя к их адгезионному отрыву [42]. Об эффективности антикавитационных эпоксидных покрытий свидетельствует опыт их применения в водосборных тоннелях Нурекской ГЭС, где в 1972 г. при сбросе потока со скоростью 16—17 м/с бетонная облицовка была разрушена на глубину до 30 см с обнажением арматуры и щебня; после же нанесения эпоксидного покрытия никаких повреждений не возникало, несмотря на то, что скорости потока достигали 35—42 м/с («Энергетическое строительство», 1978, № 11). При защите тоннелей, в том числе и гидротехнических, наиболее надежны эпоксидные пластифицированные покрытия, так как они отличаются не только высокой механической прочностью и трещиноустойчивстью, хорошей адгезией к бетонной поверхности, позволяющей им успешно сопротивляться отрывающему напору воды, но и гладкостью самого покрытия (коэффициент шероховатости меньше в 1,5—2 раза), что резко снижает гидравлические потери в тоннеле. Однако они требуют высокой гладкости основания, т. е. специального выравнивания и шпаклевки поверхности бетона; кроме того, при работах в тоннеле возникают дополнительные трудности из-за необходимости подсушки поверхности бетона, усиленной вентиляции вследствие вредности и пожароопасности операций по нанесению покрытия. Поэтому ведутся поиски более рациональных гидроизоляционных покрытий для защиты тоннелей и других подземных выработок, требующих повышенной водонепроницаемости [71]. При строительстве тоннелей и других сооружений в скальных выработках широко применяется штукатурная гидроизоляция из цементного торкрета, которая наносится прямо на скалу с последующим покрытием железобетонной облицовкой ( 4.16). Например, таким способом была осуществлена гидроизоляция камеры затворов Нурекской ГЭС ( 4.16 а), где поверхность скалы была тщательно выровнена и покрыта цементным торкретом толщиной до 50 мм, что потребовало многослойного его нанесения и повысило стоимость покрытия до 5 руб/м2, а на некоторых участках — даже армирования торкрета металлической сеткой, с увеличением стоимости покрытия до 7 руб/м2. Кроме того, возникновение протечек вызвало необходимость в дополнительной цементации скалы за облицовкой (поз. 8 на 4.16). Однако все эти дорогостоящие мероприятия не обеспечивали в полной мере водонепроницаемость облицовок, в связи с чем стали применять дополнительные «чистые» облицовки, отводя фильтрационные воды по сложной дренажной системе в межоблицовочном пространстве. Такая система общеизвестна по станционным и эскалаторным тоннелям станций метрополитенов [ Одним из первых примеров сочетания гидроизоляции с дренажом, осуществленного в 1946—1947 гг. по предложению П. Д. Глебова, является здание Севанской ГЭС в Армении ( 4.16, б). Здесь был устроен подвесной потолок, покрытый с обратной стороны окрасочной гидроизоляцией из горячей асфальтовой мастики, состоящей из 40% битума БН 70/30, 3% коротковолнистого асбеста, 57% известнякового порошка и армированной мешковиной, пропитанной горячим битумом БНД 40/60. Стены тоже были покрыты второй, чистой облицовкой, на обратную сторону которой также нанесена окрасочная гидроизоляция. Автор через 20 лет осматривал эту облицовку и убедился в высоком ее качестве; лишь в двух мести.ч замечалось протекание битума через швы подвесного потолка, что свидетельствует о недостаточной теплоустойчивости асфальтовой мастики, так как температура в межпотолочном пространстве повышается до 30—35° С, что не было учтено составом мастики. Следует подчеркнуть, что, таким образом, непроизводительно используется значительная часть дорогостоящей скальной выемки, объем которой на Севанской ГЭС достигает 10 000 м3. Весьма интересен опыт применения в тоннелях и подземных зданиях ГЭС эпоксидной окрасочной и цементной штукатурной гидроизоляции. Так, для защиты бетонной облицовки напорных водоводос Нурекской ГЭС от кавитационной эрозии в 1972 г. была использована эпоксидно-полиэфирная окраска поз. 3 на 4.16, а) из эпоксидной смолы ЭД-20 с добавкой полиэфира МГФ-9 (60 частей массы на 100 частей массы смолы), которая не только, выдержала воздействие потока со скоростью до 40 м/с, но и обеспечила водонепроницаемость облицовки. Поэтому эпоксидная окрасочная гидроизоляция нашла применение на многих водоводах, в том числе и на ГЭС Костешты-Стынка в Румынии ( 4.15,6), где она работает при отрывающем напоре до 40 м, а при армировании стеклотканью над швами водоводов — и при деформациях раскрытия швов, до 2 мм. Мы еще вернемся к этому вопросу в § 6.3. Несомненными технико-экономическими преимуществами обладают покрытия из коллоидного полимерцементного раствора' (КПЦР), который рекомендован для внутренней защиты бетонных облицовок тоннелей и подземных ГЭС; его преимущества ясны из данных табл. 4.6. Опытное покрытие из КЦР, состоявшего из портландцемента марки 500 (70 ч. м.), молотого песка (30 ч. м.) и средне-зернистого песка (200 ч. м.) при В/Ц = 0,35, на водосбросном тоннеле успешно проработало шесть лет при скоростях потока до 58 м/с, что позволило в 1978 г. расширить его применение для ремонта бетонной облицовки тоннеля. Опыт применения КЦР и КПЦР в различных эксплуатационных условиях достаточно обширен. Сначала осуществляли двухслойные покрытия путем набрызга коллоидного цементного клея КЦК, состоявшего из 70 ч. м. портландцемента и 30 ч. м. молотого песка при В/Ц = 0,35, с последующим перекрытием той же композицией с добавкой песка (КЦР), а затем стали применять полимерцементные покрытия из КПЦР, содержавшего добавки латексов (авт. свид. № 537972,1976) или эпоксидно-каучуковой эмульсионной пасты (авт. свид. № 551287, 1977). Эти полимерные добавки резко улучшили качество покрытий, прежде всего их усадочную трещиноустой-чивость, и упростили технологию их нанесения при помощи обычных растворонасосов с приставкой Марчукова и вибро-растворонагнетателей высокой производительности [27, 41]. Такая штукатурная гидроизоляция отличается следующими преимуществами: а) покрытие из КХЩР обладает очень большой прочностью (марок 600 и даже 800), что позволяет применять его для за щиты напорных граней гидротехнических сооружений без за щитного ограждения; б) данное покрытие имеет высокую сдвигоустойчивость и динамическую прочность, хорошую износостойкость против абразивного воздействия и кавитационную стойкость, благодаря чему его можно использовать на опускных колодцах, кессонах и для защиты свай, облицовки поверхностей песколовок, золо- проводов, для антикавитационной защиты тоннельных облицо вок и водоводов; в) небольшая стоимость покрытия, составляющая менее 2 руб/м2, и низкая трудоемкость (менее 0,2 чел.-ч) при ком плексной механизации с помощью вибросмесителей и раство ронасосов всего производственного процесса делают его наибо лее экономичным. Исследования последних лет (Изв. ВНИИГ, т. 119, 1977) показали, что такие покрытия отличаются высокой сульфато-стойкостью, а потому их можно применять для защиты сооружений от коррозии; дисперсное же армирование отрезками стальной проволоки типа «фибробетон» обеспечивает также высокую их трещиноустойчивость; вводя добавки металлических опилок, можно получить покрытие марки 1100, что гарантирует их кавитационную и абразивную стойкость. Поэтому покрытия из КПЦР следует отнести к наиболее перспективным в гидроизоляционной технике. Высокая морозоустойчивость покрытий из КПЦР позволяет применять их в районах с суровым климатом, однако необходимость производства работ зимой в обогреваемых тепляках ограничивает область их применения. |
К содержанию книги: Гидроизоляция зданий и сооружений
Смотрите также:
Лаки и краски Кровельные материалы Облицовочные материалы Строительство дома
Гидроизоляция, гидроизоляционные материалы
Битумы нефтяные дорожные вязкие. Битумы нефтяные изоляционные
Битумы нефтяные дорожные жидкие
Пластбит. Гудрокам. Пек каменноугольный. Водонерастворимые сланцевые фенолы
Мастика битумная кровельная горячая
Мастика марок МБК-Г-55 и МБК-Г-65
Мастика дегтевая кровельная горячая
Мастика БНСХА. Мастика хамаст. Мастика БАЭМ
Битумные эмульсии - эмульбит и эластим
Быстрораспадающаяся битумно-полимерная эмульсия ББЭ
Битумно-полимерная композиция БИПЭ. Асбилат. Битумно-латексно-кукерсольная мастика (БЛК)
Мастика битумно-полимерная холодная «Гиссар»
Холодная битумно-бутилкаучуковая мастика
Мастика битумно-бутилкаучуковая горячая гидроизоляционная
Мастика битумно-резиновая изоляционная
МАТЕРИАЛЫ НА ПОЛИМЕРНОЙ ОСНОВЕ
Гидрофобизирующие жидкости. Составы на основе эпоксидных, полиуретановых, эпоксидно-сланцевых смол
Битумно-полимерные и полимерные герметики
Хлорсульфированный полиэтилен (ХСПЭ)
Мастики гидроизоляционные бутилкаучуковые
Мастика бутилкаучуковая холодная — МБК
Мастика герметизирующая нетвердеющая строительная
МИНЕРАЛЬНЫЕ ГИДРОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ
Коллоидный цементный раствор (КЦР)
Цементно-латексная композиция (ЦЛК)
ЛИСТОВЫЕ И ШТУЧНЫЕ ГИДРОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ
Номенклатура основных рулонных гидроизоляционных материалов
Толь кровельный и гидроизоляционный
Гидростеклоизол гидроизоляционный
Активированная полиэтиленовая пленка
Полиэтиленовые листы с анкерными ребрами
Пленка поливинилхлоридная пластифицированная техническая
ОРГАНИЗАЦИЯ ГИДРОИЗОЛЯЦИОННЫХ РАБОТ
ТЕХНОЛОГИЧЕСКИЕ КОМПЛЕКТЫ (НОРМОКОМПЛЕКТЫ) ДЛЯ ПРОИЗВОДСТВА ГИДРОИЗОЛЯЦИОННЫХ РАБОТ
ОКРАСОЧНАЯ И МАСТИЧНАЯ ГИДРОИЗОЛЯЦИЯ
ОКЛЕЕННАЯ И МОНТИРУЕМАЯ ГИДРОИЗОЛЯЦИЯ
КОНТРОЛЬ КАЧЕСТВА И ПРИЕМКА ГИДРОИЗОЛЯЦИОННЫХ РАБОТ
МЕХАНИЗАЦИЯ ГИДРОИЗОЛЯЦИОННЫХ РАБОТ
ПОДГОТОВКА ПОВЕРХНОСТЕЙ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ
Аппараты пескодробеструйные передвижные моделей АДДУ-150М и АД-150Б
Гидропескоструйный аппарат ГПА-3
Воздухонагреватель МПМ-85К. Универсальный строительный воздухонагреватель УСВ
Электровоздухонагреватель ЭВП-1
Газовая сушильная установка инфракрасного излучения (РС-АКХ)
ОБОРУДОВАНИЕ ДЛЯ ОКРАСОЧНОЙ И МАСТИЧНОЙ ГИДРОИЗОЛЯЦИИ
Компрессоры диафрагменные СО-45А и СО-45Б
Краскораспылитель ручной пневматический СО- 19Б
Краскораспылитель ручной пневматический низкого давления СО-44А
Краскораспылители ручные пневматические СО-71А, СО-71Б
Краскораспылители высокого и низкого давления
Установка для нанесения жидкой шпаклевки СО-21А
Агрегат для окраски фасадов зданий СО-92А
Установки безвоздушного распыления
Краскопульт электрический СО-61
Аппарат для окраски фасадов зданий СО-66 А. Агрегат малярный СО-154
Агрегаты окрасочные высокого давления 2600Н, 2600НА, 2600НА-1, 7000Н и 7000НА
Установки безвоздушного распыления Факел-3, УБРХ-1М и ВИЗА-1
Малярная станция модели СО-115
Краскотерка жерновая СО-116. Вибросито электрическое СО-130
Мешалки-смесители и диспергаторы. Мешалка для окрасочных составов СО-11
Мешалка для окрасочных составов СО-140
Диспергатор для малярных составов СО-128
Битумокрасконагнетательные установки с распылителями. Битумонасосные установки
Машина для нанесения битумных мастик СО-122А
Агрегаты для перекачивания битумных мастик СО-119А и СО-120А
Агрегат для нанесения горячей битумной мастики АБГР-1
Оборудование для хранения и подачи по трубам горячих битумных мастик УПБ-1-50
ОБОРУДОВАНИЕ ДЛЯ ОКЛЕЕННОЙ И МОНТИРУЕМОЙ ГИДРОИЗОЛЯЦИИ
Установка для приемки, перемешивания и транспортирования товарного раствора
Прием, перемешивание и транспортирование готового раствора
Штукатурные станции СО-114, СО-114А
Штукатурный передвижной комплект 2М-73
Передвижная штукатурная станция ПШСФ-2
Растворосмеситель передвижной с откидными лопастями СО-23В
Плунжерные (поршневые) растворонасосы
Установки СО-48, СО-49 и СО-50, СО-48 и СО-49
Растворонасос поршневой, без промежуточной жидкости
Штукатурные агрегаты. Агрегат штукатурно-смесительный СО-57Б
Агрегат штукатурно-смесительный СО-85А
Машина для приготовления и подачи жестких растворов СО-126
Установки для набрызга бетонной смеси СБ-67Б-1, СБ-67Б-2
Прямоточные диафрагменные растворонасосы с пневмоприставкой
Штукатурно-затирочные машины СО-86А и СО-112А
Холодная асфальтовая штукатурная гидроизоляция
Горячая асфальтовая штукатурная гидроизоляция. Асфальтомет ВНИИГ-5
ОБОРУДОВАНИЕ ДЛЯ ОКЛЕЕЧНОЙ И МОНТИРУЕМОЙ ГИДРОИЗОЛЯЦИИ
Машина СО-107 для сушки основания гидроизоляции
Машина СО-106А для удаления воды с основания
Строительные машины для устройства оклеечной гидроизоляции на горячих битумных мастиках
Агрегаты для огрунтовки оснований. Устройства вертикального транспорта
Электронагревательное устройство (горелка) ГЭП-2
Ручное экструэионное сварочное устройство РЭСУ-500. Ручное устройство РЭСУ-500А
Гидроизоляция в период эксплуатации
ПРАВИЛА ЭКСПЛУАТАЦИИ И СРОКИ СЛУЖБЫ ГИДРОИЗОЛЯЦИИ
ЗАКОНОМЕРНОСТИ ИЗНОСА И РЕМОНТНАЯ ДИАГНОСТИКА ТЕХНИЧЕСКОГО СОСТОЯНИЯ ГИДРОИЗОЛЯЦИИ
ЭФЕКТИВНОСТЬ ПРИМЕНЕНИЯ РАЗЛИЧНЫХ ВИДОВ ГИДРОИЗОЛЯЦИИ
ПРИНЦИПЫ ВЫБОРА ЭФФЕКТИВНОЙ ГИДРОИЗОЛЯЦИИ
ГИДРОИЗОЛЯЦИЯ ПОДЗЕМНЫХ ЧАСТЕЙ ЗДАНИЙ И СООРУЖЕНИЙ
ГИДРОИЗОЛЯЦИЯ НАЗЕМНЫХ ЧАСТЕЙ ЗДАНИЙ И СООРУЖЕНИЙ
Гидроизоляция ограждающих конструкций промышленных и гражданских сооружений
Раздел 1. Материалы для гидроизоляции
Вяжущие материалы. Битумные материалы
Переработка и испытание битумных и дегтевых материалов
Вспомогательные материалы. Растворители
Наполнители и армирующие материалы
Рулонные и листовые материалы. Битумные и дегтевые материалы
Материалы для металлической гидроизоляции
Мастики и растворы. Лакокрасочные материалы
Мастики и растворы на основе битумных и дегтевых материалов
Составы на основе эпоксидных смол
Цементно-песчаные и полимерцементные составы и растворы
Раздел 2. Проектирование гидроизоляции ограждающих конструкций и кровель
Особенности конструкции сооружения и его особенности
Технологические и технико-экономические факторы
Пропиточная и инъекционная гидроизоляция
Раздел 3. Организация гидроизоляционных и кровельных работ
Покрытия из рулонных материалов на битумной основе
Покрытия из рулонных синтетических и полимерных материалов
Битумно-полимерная гидроизоляция
Полимерцементная гидроизоляция
Устройство гидроизоляции в зимнее время
Штукатурная гидроизоляция. Асфальтовая гидроизоляция
Битумно-полимерная гидроизоляция
Цементно-песчаная гидроизоляция
Гидроизоляция из коллоидного цементного раствора и активированного торкрета
Металлическая гидроизоляция. Монтаж и сварка
Контроль качества сварных соединений
Устройство противокоррозионной защиты
Гидроизоляция кровельных покрытий
Устройство кровли в заводских условиях
Производство кровельных работ в зимнее время
Техника безопасности при проведении гидроизоляционных, кровельных и антикоррозийных работ
Контроль качества, устранение дефектов и приемка гидроизоляционных работ
ГИДРОИЗОЛЯЦИОННОГО ФАРТУКА КРОВЛИ
14 Б. РУЛОННЫЕ КРОВЕЛЬНЫЕ И ГИДРОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ
§ 14.8. Герметизирующие материалы
7.2. РУЛОННЫЕ БИТУМНЫЕ МАТЕРИАЛЫ
БИКРОСТ (наплавляемый кровельный и гидроизоляционный материал)
ЛИНОКРОМ (наплавляемый кровельный и гидроизоляционный материал)
2. ГИДРОИЗОЛЯЦИЯ И ВЕТРОИЗОЛЯЦИЯ ДЛЯ ЖЕСТКОЙ КРОВЛИ
ГОСТ 25591-83 Мастики кровельные и гидроизоляционные
ГОСТ 30547-97 Материалы рулонные кровельные и гидроизоляционные