Строительство |
Строительные материалы и изделия |
|
Для получения строительных изделий высоких технических свойств все шире стали применять металлические сплавы цветных металлов. Цветные сплавы на основе меди и благородных | металлов — золота и серебра — в своем прошлом находили довольно широкое применение в отделочной технике. Алюминиевые сплавы широко используют для изготовления проката в виде профилей: уголков, швеллеров, двутавров, труб круглого и прямоуюльного сечений. Большое количество алюминиевых сплавов расходуется на изготовление заклепок, бол-т0В. Изделия из алюминиевых сплавов отличаются простотой технологии изготовления, хорошим внешним видом, сейсмостойкостью, хладостойкостью, огнестойкостью, антимагнитностью и долговечностью, что позволяет им успешно конкурировать со сталью и другими строительными материалами. Алюминий в «чистом» виде обладает многими высокими техническими свойствами: хорошей сопротивляемостью коррозионным воздействиям среды, высокой электропроводностью, пластичен, что позволяет легко изготовлять из него детали самого разнообразного и весьма сложного профиля. Недостатком алюминия является незначительная прочность — всего 70... 100 МПа, что не позволяет его использовать для несущих строительных конструкций. Однако алюминий резко повышает свои механические показатели при добавке к нему других металлов—меди, марганца, магния В настоящее время расширяется сфера применения алюминиевых конструкций и полуфабрикатов путем создания новых конструктивно-облицовочных материалов с разнообразными защитно-декоративными полимерными, лакокрасочными, эмалевыми и электротехническими покрытиями. Алюминиевые конструкции широко внедряются в гражданское, промышленное и сельскохозяйственное строительство.
В многоэтажных общественных, административных и ПОп мышленных зданиях с высотой этажа до 5 м и шагом колон каркаса 6 м применяют стеновые панели П-1А размером 1880у X 162X4125 мм. Каркас панели состоит из двух рам, соединен ных болтами через текстолитовые прокладки. Рама заполня ется двумя слоями асбестоцементных листов с внутренним утепляющим слоем. На одной стороне наклеен алюминиевый лист (пароизоляция). Наружную декоративную вставку изготовляют из шпунтовых профилей или штампованного листа Остекление панели производят стеклопакетами. Панель П-Ц имеет массу 400 кг. Для устройства внутренних перегородок, отвечающих повышенным архитектурно-строительным требованиям, применяют предварительно напряженную панель ПП-1 алюминиевых сплавов с декоративным покрытием из павинола ( 9.8). В основу конструкции положено использование в качестве обшивок тонких алюминиевых листов толщиной 0,5...0,8 мм, жесткость и устойчивость которых обеспечиваются за счет предварительного натяжения. Панель включает продольно-поперечный каркас из прессованных швеллеров и уголков, соединеных аргонодуговой сваркой, к которому заклепками крепятся натянутые листы. Между листами располагают звукоизолирующий слой минеральной ваты. На лицевую поверхность обшивки наносят декоративное покрытие из павинола или других пленочных материалов самых различных свойств, рисунка и текстуры. Панели производят размером 3500X750X62 мм, массой 35 кг. Для покрытий отапливаемых производственных общественных и гражданских зданий применяют панели покрытия с предварительно напряженными обшивками из рулонных алюминиевых листов. Панель ( 9.9) состоит из двух ферм, соединенных между собой по верхнему и нижнему поясам поперечинами, по которым располагаются обшивки. Нижний напрягаемый лист включается в работу растянутого пояса и одновременно выполняет функции подвесного потолка, а верхняя обшивка работает совместно с верхним сжатым поясом, являясь одновременно гидроизолирующим слоем. Предварительное натяжение обшивок позволяет резко увеличить жесткость панели, снизить расход аЛюминия и повысить надежность конструкции. Панель позволяет перекрывать пролеты до 30 м и более непосредственно €0т стены до стены» здания без устройства несущих элементов щатра. Панели выпускают размером 30 000Х3000Х 1750 мм, массой 2000 кг, расход алюминиевых сплавов на 1 м2 панели составляет 12 кг. Сплавы на основе меди. В чистом виде медь практически не находит применения в строительстве, используют ее в виде латуни и бронзы. Латунь — это сплав меди с цинком (до 40%), а бронза — сплав меди с оловом или каким-либо другим металлом, кроме цинка. Наиболее распространены оловянистые бронзы, содержащие 10...20% олова; применяют также алюминиевые, марганцовистые, свинцовистые и другие виды бронз. Латуни и бронзы обладают многими очень важными для техники свойствами — достаточно прочны (до 300...600 МПа), могут быть получены высокой твердости (НВ_ 200...250), обладают хорошими антифрикционными свойствами, благодаря чему они широко используются в подшипниках, имеют высокую коррозионную стойкость. Однако по экономическим причинам сплавы на основе меди в строительстве применяют лишь для изготовления санитарно-технической аппаратуры (кранов, вентилей), в отдельных случаях — для отделочных и декоративных целей. Основное же использование латунь и бронза находят в машино- и приборостроении. • Сплавы на основе олова и свинца с добавкой меди, сурьмы называют баббитами и широко применяют для подшипников. Баббиты сравнительно дороги, и по этой причине их стремятся заменять другими, более дешевыми антифрикционными материалами: серыми чугунами, сплавами на основе алюминия, метал-локерамическими сплавами. Последние получают путем сплавления сильно спрессованных тонкоизмельченных минеральных порошков (графита, кремнезема) с порошком металла (медью, железом, висмутом, молибденом). • Цинк и свинец значительно шире применяют в строительстве. Цинк в основном используют для кровельных покрытий, карнизов и водосточных труб, свинец — для футеровки кислотостойких устройств химических аппаратов, для особых видов гидроизоляции, для зачеканки швов и стыков элементов строительных конструкций, например швов между тюбингами в туннелях метрополитена. • Магний, титан и их сплавы благодаря их низкой плотности и высоким механическим свойствам применяют в основном в само летостроении и для специальных целей. Так, при плотности магниевых сплавов около 2000 кг/м3 (это самый легкий мате риал) твердость сплава достигает НВ 60...70, а прочность на Разрыв — 250...300 МПа. Магниевые сплавы получают, добавляя к магнию алюминий, марганец, цинк. Титанистые сплавы обладают очень высокой жаростойкостью, твердостью до 350 прочностью до 1500 МПа. Эти сплавы получают путем добавк к титану хрома, алюминия, ванадия. |
К содержанию книги: "Строительные материалы и изделия"
Смотрите также:
Минеральные вяжущие вещества Бетон и строительные растворы Добавки в бетон Гидроизоляция Каркасные работы Внутренние перегородки Лаки и краски Строительство дома
ОСНОВНЫЕ СВОЙСТВА СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ
Связь состава, структуры и свойств
Стандартизация свойств. Марки материалов
Механические свойства стройматериалов
Химические и технологические свойства стройматериалов. Химические и физико-химические свойства
Технологические свойства стройматериалов
Методика преподавания свойств строительных материалов
Химический и минеральный составы магматических пород
Важнейшие виды магматических пород и их строительные свойства
Осадочные горные породы. Классификация осадочных горных пород
Химический и минеральный составы осадочных пород
Важнейшие виды осадочных пород и их строительные свойства
Важнейшие метаморфические породы
Виды материалов и изделий. Технические требования к ним
Меры защиты каменных материалов от выветривания в сооружениях
Методика преподавания природных каменных материалов
КЕРАМИЧЕСКИЕ МАТЕРИАЛЫ И ИЗДЕЛИЯ
Сырье для производства керамических материалов и изделий
Общая схема производства керамических изделий
Кирпич керамический обыкновенный
Эффективные стеновые керамические изделия
Монтаж дома из керамических панелей
Облицовочные материалы и изделия
Керамические изделия для внутренней облицовки
Керамические материалы и изделия различного назначения
Санитарно-техническая керамика
Теплоизоляционные керамические изделия
Кислотоупорные керамические изделия
Методика преподавания керамических материалов и изделий
МАТЕРИАЛЫ И ИЗДЕЛИЯ ИЗ СИЛИКАТНЫХ РАСПЛАВОВ
Разновидности стекла и стеклянных изделий в строительстве
Методика преподавания стекла и других плавленых материалов и изделий
НЕОРГАНИЧЕСКИЕ ВЯЖУЩИЕ ВЕЩЕСТВА
Сырьевые материалы и основы технологии неорганических вяжущих веществ
Производство неорганических вяжущих веществ
Магнезиальные вяжущие вещества
Растворимое стекло и кислотоупорный цемент
Известь строительная воздушная
Гидравлические вяжущие вещества
Стойкость затвердевшего цемента
Портландцементы с активными минеральными добавками
Другие вяжущие с активными минеральными добавками
Гипсоцементно-пуццолановые вяжущие. Глиноземистый цемент
Состав и особенности твердения глиноземистого цемента
Свойства и применение глиноземистого цемента
Расширяющиеся и безусадочные цементы
Методика преподавания неорганических вяжущих веществ
Основные свойства строительных растворов
Применение растворов различных видов
Методика преподавания бетонов и строительных растворов
ИСКУССТВЕННЫЕ КАМЕННЫЕ БЕЗОБЖИГОВЫЕ МАТЕРИАЛЫ И ИЗДЕЛИЯ
Силикатные материалы и изделия
Производство силикатных изделий
Гипсовые и гипсобетонные изделия
Свойства изделий на основе гипса
Производство изделий из гипсовых и гипсобетонных смесей
Асбестоцементные материалы и изделия
Производство асбестоцементных изделий
МЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ И ИЗДЕЛИЯ
Основы технологии черных металлов
Кривые охлаждения и нагревания железа
Механические испытания металлов
Основы термической обработки стали
Виды термической обработки стали
Химико-термическая обработка стали
Наклеп, возврат и старение стали
Применение металлов в строительстве. Сталь углеродистая обыкновенного качества
Применение стали в строительстве
Коррозия металлов и способы защиты от нее
МАТЕРИАЛЫ И ИЗДЕЛИЯ ИЗ ДРЕВЕСИНЫ
Механические свойства древесины
Защита древесины от гниения, поражения насекомыми и возгорания
Основные породы древесины, применяемые в строительстве
Материалы и изделия из древесины
Строительные детали и изделия из древесины
Методика преподавания материалов и изделий из древесины
ТЕПЛОИЗОЛЯЦИОННЫЕ И АКУСТИЧЕСКИЕ МАТЕРИАЛЫ И ИЗДЕЛИЯ
Строение и свойства теплоизоляционных материалов
Неорганические теплоизоляционные материалы и изделия
Теплоизоляционные материалы из вспученных горных пород и изделия на их основе
Органические теплоизоляционные материалы и изделия
Акустические материалы и изделия
Звукопоглощающие материалы и изделия
Звукоизоляционные материалы и изделия
Методика преподавания теплоизоляционных и акустических материалов и изделий
БИТУМНЫЕ И ДЕГТЕВЫЕ ВЯЖУЩИЕ И МАТЕРИАЛЫ НА ИХ ОСНОВЕ
Состав, свойства и применение дегтя
Смешанные вяжущие на основе битумов и дегтей, эмульсии и пасты
Материалы на основе битумов и дегтей
Структура и состав асфальтового бетона
Производство асфальтового бетона
Применение асфальтового бетона
Кровельные, гидроизоляционные и герметизирующие материалы
Беспокровные рулонные материалы на основе
Обмазочные материалы (мастики, эмульсии и пасты)
Герметизирующие материалы (герметики) на основе битумов
Методика преподавания вяжущих и материалов на основе битумов и дегтей
МАТЕРИАЛЫ И ИЗДЕЛИЯ ИЗ ПЛАСТМАСС
Пластификаторы. Стабилизаторы, отвердители, инициаторы
Основные свойства строительных пластмасс. Прочность пластмасс
Виды строительных материалов и изделий из пластмасс
Конструкционно-отделочные и отделочные материалы
Гидроизоляционные материалы и герметики
Трубы и санитарно-технические изделия
Применение полимеров в технологии бетонов
Методика преподавания материалов и изделий из пластмасс
Природные неорганические пигменты
Искусственные неорганические пигменты
Металлические и органические пигменты
Связующие вещества, растворители и разбавители
Водоразбавляемые краски на основе неорганических вяжущих веществ и клеев