Физические свойства древесины. На свойства древесины большое влияние оказывает влажность

  

Вся электронная библиотека >>>

Содержание книги >>>

 

Строительство

Строительные материалы и изделия


Раздел: Быт. Хозяйство. Строительство. Техника

 

§ 12.2. Свойства древесины

 

 

Древесина обладает весьма разнообразными свойствами. Наиболее полно они раскрываются при изучении физических и механических свойств древесины.

• Физические свойства древесины. На свойства древесины большое влияние оказывает влажность. Воду, находящуюся в древесине, делят на три вида: капиллярную (или свободную), гигроскопическую и химически связанную. Капиллярная вода заполняет в древесине полости клеток, межклеточные пространства и сосуды. Гигроскопическая вода находится в стенках клеток. Химически связанная вода входит в химический состав веществ, образующих древесину. Основную массу воды в растущем дереве составляют капиллярная и гигроскопическая вода или только гигроскопическая вода. Состояние древесины, в которой отсутствует капиллярная вода и содержится только гигроскопическая, называется точкой насыщения волокон. В древесине разных пород она составляет 23...35%. При высыхании древесины влага постепенно испаряется с поверхности наружных слоев, а влага, оставшаяся в древесине, передвигается от внутренних слоев к наружным.

По степени влажности различают древесину: мокрую, све-жесрубленную (влажность 35% и выше), воздушно-сухую (влажность  15...20%)   и комнатно-сухую   (влажность 8... 12%)-

Гигроскопичностью древесины называют свойство ее поглощать из воздуха парообразную воду. Степень поглощения зависит от температуры воздуха и его относительной влажности.

Равновесной называют влажность, которую имеет древесина при продолжительном нахождении на воздухе с постоянной относительной влажностью и температурой. Равновесная влажность комнатно-сухой древесины составляет 8... 12%, поэтому до такой влажности высушивают паркетную клепку и древесину, используемую в помещениях.

 

 

Влажная древесина отдает влагу окруЖ310' щему воздуху, а сухая поглощает ее. Поскольку влажность воздуха не постоянна, влажность древесины также меняется-Изменение влажности древесины от нуля до точки насыщения волокон вызывает изменение объема древесины. Последнее приводит к разбуханию и усушке, короблению древесины и появ-лению трещин. Для уменьшения гигроскопичности и водопогло-щения древесину покрывают лакокрасочными материалами или пропитывают различными веществами.

Плотность древесины зависит от объема пор и влажности и характеризует ее физико-механические свойства (прочность, теплопроводность, водопоглощение). Показатель плотности используют при определении коэффициента качества, который находят отношением предела прочности при сжатии к плотности. У сосны он равен 0,6, а дуба — 0,57.

Пористость древесины хвойных пород колеблется от 46 до 85%, лиственных — от 32 до 80%.

Усушкой древесины называют уменьшение ее линейных размеров и объема при высыхании. Испарение капиллярной воды не сопровождается усушкой. Последняя происходит только при испарении гигроскопической влаги. При этом уменьшается толщина водных оболочек, мицеллы сближаются друг с другом и уменьшаются размеры древесины. Ввиду неоднородности строения древесина усыхает или разбухает в различных направлениях не одинаково.

Свойство неравномерного изменения линейных размеров в различных направлениях является одним из отрицательных свойств дерева как строительного материала. Медленное высыхание древесины обеспечивает более равномерную усушку и дает Меньше трещин. Неравномерная усушка древесины в различных направлениях вызывает различные напряжения, в связи с чем древесина коробится и покрывается трещинами. В круглом брев не трещины располагаются радиально. Доски, вырезанные ближе к сердцевине ствола, коробятся меньше, чем доски, выпиленные ближе к поверхности бревна.

Набуханием называют способность древесины увеличивать свои размеры и объем при поглощении воды, пропитывающей оболочки клеток. Древесина разбухает при поглощении влаги до точки насыщения волокон. Набухание, как и усушка, не одинаково в разных направлениях. Набухание древесины вдоль волокон составляет 0,1...0,8%, в радиальном направлении — 3...5% и в тангентальном — 6... 12%.

Теплопроводность древесины невелика, она зависит от характера пористости, влажности, направления волокон, породы и плотности дерева, а также от температуры. Теплопроводность древесины вдоль волокон примерно в 1,8 раза больше, чем поперек волокон. В среднем она составляет 0,16...0,30 Вт/(м-°С). С увеличением плотности и влажности уменьшается количество воздуха, находящегося в пустотах, в связи с чем теплопроводность древесины увеличивается.

Электропроводность древесины зависит от ее влажности. Электрическое сопротивление сухой древесины в среднем составляет 75-Ю7 Ом-см, а сырой — в 10 раз меньше. Древесину используют при электропроводке в качестве досок, розеток и т. д.

Водопроницаемость древесины зависит от породы дерева, первоначальной влажности, характера разреза (торцового, радиального, тангентального), местоположения древесины в стволе (ядро, заболонь), ширины годичных слоев, возраста древесины. Водопроницаемость вдоль волокон больше, чем через радиальную и тангентальную поверхности. Характеризуется водопроницаемость древесины количеством воды, профильтровавшейся через поверхность образца (г/см2).

Стойкость древесины к действию кислот, щелочей и воды. Длительное действие кислот и щелочей разрушает древесину, и чем выше концентрация, тем сильнее их разрушающее действие. Слабощелочные растворы не разрушают древесину. В кислой среде древесина начинает разрушаться при рН^2, тогда как разрушение бетона и стали начинается при рН^4. По исследованиям С. И. Ванина, хвойные породы более стойки к действию серной, азотной, соляной и уксусной кислот и едкого натра, чем лиственные, а из хвойных пород наибольшей стойкостью обладает лиственница. В морской воде древесина сохраняется хуже, чем в речной. В воде большой бактериологической агрессивности стойкость древесины низка, поэтому ее не применяют в сетях канализации.

• Механические свойства древесины как анизотропного материала не одинаковы в различных направлениях. Механические свойства древесины зависят от многих факторов: с увеличением   влажности   прочность   древесины   снижается;   древесина большой плотности имеет более высокую прочность; на прочность древесины влияют процент поздней древесины, наличие пороков, гнили, старение.

Прочность древесины при сжатии. Усилия к конструктивному элементу могут быть приложены с учетом строения древесины вдоль или поперек волокон, поэтому различают сжатие вдоль и поперек волокон. Для испытания на сжатие вдоль волокон берут образцы древесины без сучков в виде прямоугольной призмы размером 20X20X30 мм при размере древесины не менее 30 мм вдоль волокон и испытывают на прессе.

Предел прочности древесины при сжатии вдоль волокон с влажностью 12% в зависимости от породы дерева меняется в широких пределах — от 30 до 80 МПа. Предел прочности древесины при сжатии поперек волокон значительно меньше, чем при сжатии вдоль волокон, и составляет: в радиальном направлении для пихты — 4,1 МПа, граба — 25,6

Прочность древесины на растяжение. Древесина имеет высокий показатель прочности на растяжение вдоль волокон. Для наших основных пород эта величина меняется от 80 до 190 МПа. Однако трудность передачи ,§ /до усилий, заключающаяся в том, что в закрепленных концах деревянной детали возникают напряжения смятия и скалывания, которым Древесина сопротивляется плохо, не позволяет широко использовать древесину в конструкциях, работающих на растяжение.

Прочность древесины на статический изгиб высока, благодаря   чему  ее   широко применяют для элементов  зданий  и сооружений,   работают»

на изгиб (балки, бруски, стропила, фермы и т. д.). Предел Пр0чХ

ности   древесины   на   изгиб   определяют   на   образцах-балочках

размером 20X20X300 мм. Для различных пород он СОСТЭВЛЯРТ

50...100 МПа (при влажности 12%).

Предел прочности древесины на изгиб должен быть приведен к влажности 12%. У лиственных пород прочность при изгибе в радиальном и тангентальном направлениях практически одинакова, а у хвойных прочность в тангентальном направлении немного больше, чем в радиальном. Прочность на статический изгиб зависит от тех же факторов, что и прочность при сжатии.

Прочность древесины на скалывание вдоль волокон невысокая— 6,5...14,5 МПа. Сопротивление перерезыванию древесины поперек волокон в 3...4 раза выше сопротивления скалыванию вдоль волокон, но чистый срез обычно не имеет места, так как одновременно происходит смятие и изгиб волокон. В строительных конструкциях древесина часто работает на скалывание вдоль волокон, например в стропильных фермах и других элементах конструкций. Вместе с тем следует иметь в виду, что в настоящее время на передовых предприятиях наблюдается тенденция к переходу на стандартную влажность древесины, равную 12%.

 

К содержанию книги: "Строительные материалы и изделия"

 

Смотрите также:

 

 Минеральные вяжущие вещества   Бетон и строительные растворы   Добавки в бетон  Гидроизоляция  Каркасные работы  Внутренние перегородки  Лаки и краски  Строительство дома

 

Строительные материалы 

 

ОСНОВНЫЕ СВОЙСТВА СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ

Связь состава, структуры и свойств

Стандартизация свойств. Марки материалов

Физические свойства

Механические свойства стройматериалов

Химические и технологические свойства стройматериалов. Химические и физико-химические свойства

Технологические свойства стройматериалов

Методика преподавания свойств строительных материалов

  

ПРИРОДНЫЕ КАМЕННЫЕ МАТЕРИАЛЫ

Магматические породы

Химический и минеральный составы магматических пород

Важнейшие виды магматических пород и их строительные свойства

Осадочные горные породы. Классификация осадочных горных пород

Химический и минеральный составы осадочных пород

Важнейшие виды осадочных пород и их строительные свойства

Важнейшие метаморфические породы

Виды материалов и изделий. Технические требования к ним

Добыча и обработка каменных материалов. Технология каменных материалов и изделий включает добычу горной породы и ее обработку

Меры защиты каменных материалов от выветривания в сооружениях

Методика преподавания природных каменных материалов

 

КЕРАМИЧЕСКИЕ МАТЕРИАЛЫ И ИЗДЕЛИЯ

Сырье для производства керамических материалов и изделий

Непластичные материалы

Глазури и ангобы

Общая схема производства керамических изделий

Стеновые материалы

Кирпич керамический обыкновенный

Эффективные стеновые керамические изделия

Монтаж дома из керамических панелей

Облицовочные материалы и изделия

Керамические изделия для внутренней облицовки

Керамические материалы и изделия различного назначения

Керамические трубы

Санитарно-техническая керамика

Теплоизоляционные керамические изделия

Кислотоупорные керамические изделия

Огнеупорные материалы

Методика преподавания керамических материалов и изделий

 

МАТЕРИАЛЫ И ИЗДЕЛИЯ ИЗ СИЛИКАТНЫХ РАСПЛАВОВ

Стекло и изделия из стекла

Сырье

Производство стекла

Свойства

Разновидности стекла и стеклянных изделий в строительстве

Ситаллы и шлакоситаллы

Литые каменные изделия

Методика преподавания стекла и других плавленых материалов и изделий

  

НЕОРГАНИЧЕСКИЕ ВЯЖУЩИЕ ВЕЩЕСТВА

Сырьевые материалы и основы технологии неорганических вяжущих веществ

Производство неорганических вяжущих веществ

Воздушные вяжущие вещества

Свойства гипсовых вяжущих

Применение гипсовых вяжущих

Магнезиальные вяжущие вещества

Растворимое стекло и кислотоупорный цемент

Известь строительная воздушная

Твердение и свойства

Применение извести

Гидравлические вяжущие вещества

Портландцемент

Состав портландцемента

Твердение портландцемента

Структура портландцемента

Свойства портландцемента

Стойкость затвердевшего цемента

Применение портландцемента

Разновидности портландцемента

Портландцементы с активными минеральными добавками

Твердение

Свойства портландцементов

Другие вяжущие с активными минеральными добавками

Гипсоцементно-пуццолановые вяжущие. Глиноземистый цемент

Сырье и производство

Состав и особенности твердения глиноземистого цемента

Свойства и применение глиноземистого цемента

Расширяющиеся и безусадочные цементы

Методика преподавания неорганических вяжущих веществ

  

СТРОИТЕЛЬНЫЕ РАСТВОРЫ

Основные свойства строительных растворов

Применение растворов различных видов

Методика преподавания бетонов и строительных растворов

 

ИСКУССТВЕННЫЕ КАМЕННЫЕ БЕЗОБЖИГОВЫЕ МАТЕРИАЛЫ И ИЗДЕЛИЯ

Силикатные материалы и изделия

Сырье

Производство силикатных изделий

Тяжелый силикатный бетон

Легкие силикатные бетоны

Ячеистые силикатные бетоны

Гипсовые и гипсобетонные изделия

Свойства изделий на основе гипса

Производство изделий из гипсовых и гипсобетонных смесей

Асбестоцементные материалы и изделия

Сырье

Производство асбестоцементных изделий

Виды асбестоцементных изделий

 

МЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ И ИЗДЕЛИЯ

Основы технологии черных металлов

Производство стали

Строение металлов

Кривые охлаждения и нагревания железа

Структура

Механические испытания металлов

Основы термической обработки стали

Виды термической обработки стали

Химико-термическая обработка стали

Наклеп, возврат и старение стали

Применение металлов в строительстве. Сталь углеродистая обыкновенного качества

Сталь легированная

Применение стали в строительстве

Чугуны

Цветные металлы и сплавы

Коррозия металлов и способы защиты от нее

Сварка металлов

 

МАТЕРИАЛЫ И ИЗДЕЛИЯ ИЗ ДРЕВЕСИНЫ

Строение и состав древесины

Механические свойства древесины

Пороки древесины

Сушка древесины

Защита древесины от гниения, поражения насекомыми и возгорания

Основные породы древесины, применяемые в строительстве

Материалы и изделия из древесины

Строительные детали и изделия из древесины

Методика преподавания материалов и изделий из древесины

  

ТЕПЛОИЗОЛЯЦИОННЫЕ И АКУСТИЧЕСКИЕ МАТЕРИАЛЫ И ИЗДЕЛИЯ

Строение и свойства теплоизоляционных материалов

Неорганические теплоизоляционные материалы и изделия

Теплоизоляционные материалы из вспученных горных пород и изделия на их основе

Органические теплоизоляционные материалы и изделия

Акустические материалы и изделия

Звукопоглощающие материалы и изделия

Звукоизоляционные материалы и изделия

Методика преподавания теплоизоляционных и акустических материалов и изделий

 

БИТУМНЫЕ И ДЕГТЕВЫЕ ВЯЖУЩИЕ И МАТЕРИАЛЫ НА ИХ ОСНОВЕ

Битумы

Состав и структура битумов

Свойства битумов

Дегти

Состав, свойства и применение дегтя

Смешанные вяжущие на основе битумов и дегтей, эмульсии и пасты

Материалы на основе битумов и дегтей

Сырье

Структура и состав асфальтового бетона

Производство асфальтового бетона

Свойства асфальтового бетона

Применение асфальтового бетона

Кровельные, гидроизоляционные и герметизирующие материалы

Покровные материалы

Рулонные покровные материалы

Беспокровные рулонные материалы на основе

Обмазочные материалы (мастики, эмульсии и пасты)

Герметизирующие материалы (герметики) на основе битумов

Методика преподавания вяжущих и материалов на основе битумов и дегтей

  

МАТЕРИАЛЫ И ИЗДЕЛИЯ ИЗ ПЛАСТМАСС

Основные компоненты пластмасс

Наполнители

Пластификаторы. Стабилизаторы, отвердители, инициаторы

Основные свойства строительных пластмасс. Прочность пластмасс

Виды строительных материалов и изделий из пластмасс

Конструкционно-отделочные и отделочные материалы

Материалы для полов

Теплоизоляционные материалы

Гидроизоляционные материалы и герметики

Трубы и санитарно-технические изделия

Применение полимеров в технологии бетонов

Клеи на основе полимеров

Методика преподавания материалов и изделий из пластмасс

  

ЛАКОКРАСОЧНЫЕ МАТЕРИАЛЫ

Пигменты и наполнители

Природные неорганические пигменты

Искусственные неорганические пигменты

Металлические и органические пигменты

Связующие вещества, растворители и разбавители

Растворители и разбавители

Красочные составы

Лаки

Водоразбавляемые краски на основе неорганических вяжущих веществ и клеев