Ячеистые бетоны - препарат ГК гидролизованная боенская кровь

  

Вся электронная библиотека >>>

Содержание книги >>>

 

Строительство

Строительные материалы и изделия


Раздел: Быт. Хозяйство. Строительство. Техника

 

§6.13. Ячеистые бетоны

 

 

• Ячеистые бетоны являются разновидностью легких бетонов с равномерно распределенными порами (до 85% от общего объема бетона); их получают в результате затвердевания предварительно вспученной порообразователем смеси вяжущего, воды и кремнеземистого компонента.

По виду применяемого вяжущего ячеистые бетоны делят на Следующие группы: газобетоны и пенобетоны, получаемые на основе портландцемента или цементно-известкового вяжущего; газосиликаты и пеносиликаты, получаемые на основе смеси извести-кипелки и кварцевого песка; газошлакобетоны и пено-Ч1лакобетоны, получаемые из смеси извести и тонкомолотых Доменных гранулированных шлаков или золы-уноса.

По условиям твердения различают ячеистые бетоны пропаренные и автоклавного твердения.

По назначению и плотности ячеистые бетоны делят на 'теплоизоляционные с плотностью в сухом состоянии до 500 кг/м3' конструкционно-теплоизоляционные с плотностью 500...900 кг/м и конструкционные с плотностью 900... 1200 кг/м3. По показате лям плотности установлено десять марок ячеистого бетона 0т Д300 до Д1200.

Ячеистые бетоны, будучи материалами весьма пористыми отличаются низкой плотностью и соответственно относительно невысокой прочностью. Такая же связь, но несколько другого порядка, существует между плотностью и теплопроводностью — показателем, особо важным для ячеистых бетонов. Теплопроводность ячеистых бетонов изменяется 0,07...0,25 Вт/(м-  °С).

 

 

В идеальном случае структура ячеистого бетона представляет замкнутые ячейки размером 0,4...1,5 мм. Равномерность размеров и замкнутый характер пор уменьшают концентрацию напряжений в цементной оболочке ячеек, распределение напряжений происходит равномерно по сечению элемента, и прочность ячеистого бетона увеличивается. При неудовлетворительной структуре наряду с мелкими замкнутыми порами присутствуют открытые крупные ячейки, которые могут сообщаться не только между собой, но и с окружающей средой. При такой структуре ячеистого бетона уменьшаются прочность и морозостойкость, увеличиваются теплопроводность и водопоглощение. Высокая морозостойкость ячеистых бетонов объясняется особенностями их строения — большим количеством замкнутых пор, наполненных воздухом или газом. Для ячеистых бетонов установлены следующие марки морозостойкости: F15, 25, 35, 50 и 100.

Важным показателем прочности ячеистого бетона является прочность камня-оболочки ячейки, которая зависит не только от вида вяжущего, но и условий его твердения и влажности бетона. Наиболее высокую прочность имеют бетоны после автоклавной обработки, при этом значительно экономится вяжущее вещество. В зависимости от гарантированных значений прочности ячеисто го бетона на сжатие установлены следующие классы (МПа) В0,35; 0,75; 0,85; 1; 1,5; 2,5; 3,5; 7,5; 10; 12,5; 15; 17,5 и 20.

Большие усадочные деформации вызывают изменением влажности при высыхании бетона, их величина зависит главным образом от начальной влажности изделий после тепловлаж-ностной обработки. После автоклавного твердения влажность изделий доходит до 25% по массе, а после пропаривания — до 50%. Усадка после высыхания достигает соответственно 1,2 и 2,5 мм/м. От усадочных деформаций могут появиться трещины, значительно снижающие долговечность изделий.

Введение в состав ячеистого бетона немолотого песка или снижение расхода воды затворения, а также применение более совершенной технологии изготовления изделий — вибровспучивания с последующей автоклавной обработкой — позволяет значительно снизить усадочные деформации.

Вяжущим для приготовления ячеистых бетонов обычно слу жат  портландцемент,   молотая   негашеная  известь.   В  качестве кремнеземистого компонента  используют измельченный  кварце вый песок, молотые доменные шлаки и золу-унос.

Вода для  ячеистых  бетонов  должна  удовлетворять  общим требованиям, предъявляемым к воде для бетонов.

Для образования ячеистой структуры бетона применяют пено-и разообразователи. В качестве пенообразователей используют несколько видов поверхностно-активных веществ, способствующих получению устойчивых пен. Клееканифольный пенообразователь приготовляют из мездрового клея, канифоли и водяного раствора едкого иатра; смолосапониновый — из мыльного корня и воды, иногда для увеличения стойкости пены в него вводят жидкое стекло; алюмосульфонафтеновый — из керосинового контакта, сернокислого глинозема и едкого натра; пенообразователь ГК — из гидролизованной боенской крови и сернокислого железа. В качестве газообразователей используют алюминиевую пудру ПАК-3 или ПАК.-4 с содержанием активного алюминия 82% и тонкостью помола 5000...6000 см2/г. Расход алюминиевой пудры зависит от плотности получаемого газобетона и составляет 0,25...0,6 кг/м3.

• Пенобетоны получают смешиванием цементного теста или раствора с устойчивой пеной. Пену получают взбиванием жидкой смеси канифольного мыла и животного клея или водного раствора сапонина (вытяжки из растительного мыльного корня). Такая пена имеет устойчивую структуру, хорошо смешивается с цементным тестом и раствором, которые распределяются по пленкам, окружающим воздушные ячейки, и в этом положении затвердевают. Лучшими пенообразователями являются алюмо-сульфонафтеновые  и  препарат ГК (гидролизованная  боенская кровь).

Пену, цементное тесто или раствор, а также их смесь приготовляют в специальных пенобетоносместителях, состоящих из трех барабанов, внутри которых вращаются валы с лопастями. Готовое тесто из верхнего барабана переливается в нижний, туда же из второго верхнего барабана поступает готовая пена, после чего тесто и пену тщательно перемешивают в течение 2... 3 мин. Приготовленная смесь поступает в бункера, из которых разливается в формы для изделий. До тепловлажностной обработки смесь выдерживают в формах. За это время пеномасса приобретает начальную прочность, не разрушаясь при встряхивании. Сократить время выдержки можно путем использования быстросхватывающихся цементов или путем введения добавок — ускорителей твердения.

По физико-механическим свойствам различают пенобетон теплоизоляционный, конструктивно-теплоизоляционный и конструктивный. Теплоизоляционный пенобетон отливается в виде блоков размером 100X50X50 см и больше, которые после затвердевания распиливают на плиты. Теплоизоляционный пенобетон имеет прочность до 2,5 МПа, теплопроводность — 0,1... 0,2 Вт/(м- °С). Этот вид пенобетона применяют для теплоизоляции железобетонных покрытий, перегородок и т. д. Конструктивно-теплоизоляционный пенобетон имеет прочность 2,5...7,5 МПа, теплопроводность 0,2...0,4 Вт/(м-°С), применяют его для ограж. 1 дающих конструкций. Из конструктивного пенобетона изготов- I ляют изделия для покрытий. Их армируют двумя сетками из I проволоки диаметром 3...5 мм. Конструктивный пенобетон имеет * прочность до 20 МПа и теплопроводность 0,4...0,6 Вт (м-°С). Конструктивный пенобетон широко используют в трехслойных ограждающих конструкциях отапливаемых зданий.

Газобетон получают из смеси портландцемента, кремнеземистого компонента и газообразователя. Широкое применение в качестве газообразователя получила алюминиевая пудра, которая, реагируя с водным раствором гидроксида кальция, выделяет водород

2А1 + ЗСа(ОН)26Н20 = ЗСаО.А1203-6Н20 + ЗН2

вызывающий вспучивание цементного теста.  Последнее, затвердевая, сохраняет пористую структуру.

В портландцементных бетонах гидроксид кальция образуется в результате гидролиза трехкальциевого силиката, для ускорения этого процесса в смесь добавляют известь до 10% от массы цемента.

Алюминиевую пудру для лучшего распределения в смеси применяют в виде водной суспензии. Так как алюминиевый порошок при изготовлении на заводе парафинируют и частицы алюминия не смачиваются водой, то для удаления пленки парафина алюминиевую пудру предварительно прокаливают в электропечах при температуре 200°С, чтобы исключить возможность воспламенения порошка или взрыва. Кроме того, для придания пудре гидрофильных свойств ее обрабатывают водным раствором СДБ, канифольного мыла и др.

Для изготовления изделий из газобетона смесь молотого песка и воды смешивают в смесителе с цементом, алюминиевым порошком, водой и немолотым песком. Затем смесь разливают в формы.

В настоящее время на заводах страны для приготовления ячеистого бетона различных видов применяют современные виброгазобетоносместители СМС-40 и гидродинамический смеситель ГДС-3. Эти машины обеспечивают хорошее перемешивание, они позволяют получать высокогомогенные и активированные смеси с пониженным содержанием воды затворения (до 35...40%), при этом продолжительность процесса приготовления смеси не превышает 3 мин.

Гидродинамический смеситель ГДС-3 ( 6. 16) состоит из горизонтальной смесительной камеры с лопастным валом, активаторами, загрузочными устройствами, самоходного портала, щита снабжения электроэнергией и системы управления.

Виброгазосмеситель СМС-40 ( 6.17) состоит из корпуса, вертикального вала с лопастями, вибрационной системы и самоходного портала. На внутренней поверхности корпуса смонтированы отбойные лопасти. По всей длине вала по винтовой линии установлены попарно лопасти, образующие двухлопастной пропеллер. Привод вертикального вала осуществляется снизу через клиноременную передачу и конический редуктор. В конструкции вибрационного устройства предусмотрено регулирование частоты вибрации и амплитуды колебаний. Исходные материалы загружаются через люки, имеющиеся в крышке. Готовая смесь выгружается через затвор, под которым расположен лоток, предназначенный для заливки газобетонной смеси в форму.

Формование ячеисто-бетонных масс производят на виброплощадках со специальной бортоснасткой. После непродолжительной выдержки газобетон разрезают машиной СМ-1211 на мелкие блоки и направляют в автоклавы. Режим автоклавной обработки изделий поддерживается по заданной программе автоматической системой регулирования. Твердение изделий в автоклаве при температуре 175°С и давлении 0,8 МПа обеспечивает высокую прочность и позволяет существенно уменьшить расход цемента путем частичной или полной замены его известью. Из автоклавов изделия поступают в пакетах на склад готовой продукции.

По свойствам газобетон аналогичен пенобетону. Однако он проще в изготовлении и позволяет получать изделия более устойчивого качества.

Способ производства ячеистых бетонов методом комплексной вибрации позволяет не только управлять процессом структура образования, но и дает ряд технико-экономических преимуществ-интенсифицирует технологический процесс, улучшает свойства ячеистых бетонов, снижает влажность готовых изделий. Вслед. ствие этого, а также возможности использования местного сырья (извести, песка, шлака и золы) изготовление автоклавного газобетона, газосиликата и газошлакобетона стало основным   направлением   развития   производства   ячеистых   бетонов.

Блоки из ячеистых бетонов автоклавного твердения примени-. ют для кладки наружных и внутренних стен и перегородок жилых, общественных, промышленных и сельскохозяйственных зданий с относительной влажностью воздуха помещений не более 75%, а в наружных стенах при влажности более 60% должно наноситься с внутренней поверхности стен пароизоляционное покрытие. Применение блоков из ячеистых бетонов для цоколей и стен подвалов, а также стен помещений с мокрым режимом или наличием агрессивных сред не допускается.

 

К содержанию книги: "Строительные материалы и изделия"

 

Смотрите также:

 

 Минеральные вяжущие вещества   Бетон и строительные растворы   Добавки в бетон  Гидроизоляция  Каркасные работы  Внутренние перегородки  Лаки и краски  Строительство дома

 

Строительные материалы 

 

ОСНОВНЫЕ СВОЙСТВА СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ

Связь состава, структуры и свойств

Стандартизация свойств. Марки материалов

Физические свойства

Механические свойства стройматериалов

Химические и технологические свойства стройматериалов. Химические и физико-химические свойства

Технологические свойства стройматериалов

Методика преподавания свойств строительных материалов

  

ПРИРОДНЫЕ КАМЕННЫЕ МАТЕРИАЛЫ

Магматические породы

Химический и минеральный составы магматических пород

Важнейшие виды магматических пород и их строительные свойства

Осадочные горные породы. Классификация осадочных горных пород

Химический и минеральный составы осадочных пород

Важнейшие виды осадочных пород и их строительные свойства

Важнейшие метаморфические породы

Виды материалов и изделий. Технические требования к ним

Добыча и обработка каменных материалов. Технология каменных материалов и изделий включает добычу горной породы и ее обработку

Меры защиты каменных материалов от выветривания в сооружениях

Методика преподавания природных каменных материалов

 

КЕРАМИЧЕСКИЕ МАТЕРИАЛЫ И ИЗДЕЛИЯ

Сырье для производства керамических материалов и изделий

Непластичные материалы

Глазури и ангобы

Общая схема производства керамических изделий

Стеновые материалы

Кирпич керамический обыкновенный

Эффективные стеновые керамические изделия

Монтаж дома из керамических панелей

Облицовочные материалы и изделия

Керамические изделия для внутренней облицовки

Керамические материалы и изделия различного назначения

Керамические трубы

Санитарно-техническая керамика

Теплоизоляционные керамические изделия

Кислотоупорные керамические изделия

Огнеупорные материалы

Методика преподавания керамических материалов и изделий

 

МАТЕРИАЛЫ И ИЗДЕЛИЯ ИЗ СИЛИКАТНЫХ РАСПЛАВОВ

Стекло и изделия из стекла

Сырье

Производство стекла

Свойства

Разновидности стекла и стеклянных изделий в строительстве

Ситаллы и шлакоситаллы

Литые каменные изделия

Методика преподавания стекла и других плавленых материалов и изделий

  

НЕОРГАНИЧЕСКИЕ ВЯЖУЩИЕ ВЕЩЕСТВА

Сырьевые материалы и основы технологии неорганических вяжущих веществ

Производство неорганических вяжущих веществ

Воздушные вяжущие вещества

Свойства гипсовых вяжущих

Применение гипсовых вяжущих

Магнезиальные вяжущие вещества

Растворимое стекло и кислотоупорный цемент

Известь строительная воздушная

Твердение и свойства

Применение извести

Гидравлические вяжущие вещества

Портландцемент

Состав портландцемента

Твердение портландцемента

Структура портландцемента

Свойства портландцемента

Стойкость затвердевшего цемента

Применение портландцемента

Разновидности портландцемента

Портландцементы с активными минеральными добавками

Твердение

Свойства портландцементов

Другие вяжущие с активными минеральными добавками

Гипсоцементно-пуццолановые вяжущие. Глиноземистый цемент

Сырье и производство

Состав и особенности твердения глиноземистого цемента

Свойства и применение глиноземистого цемента

Расширяющиеся и безусадочные цементы

Методика преподавания неорганических вяжущих веществ

  

СТРОИТЕЛЬНЫЕ РАСТВОРЫ

Основные свойства строительных растворов

Применение растворов различных видов

Методика преподавания бетонов и строительных растворов

 

ИСКУССТВЕННЫЕ КАМЕННЫЕ БЕЗОБЖИГОВЫЕ МАТЕРИАЛЫ И ИЗДЕЛИЯ

Силикатные материалы и изделия

Сырье

Производство силикатных изделий

Тяжелый силикатный бетон

Легкие силикатные бетоны

Ячеистые силикатные бетоны

Гипсовые и гипсобетонные изделия

Свойства изделий на основе гипса

Производство изделий из гипсовых и гипсобетонных смесей

Асбестоцементные материалы и изделия

Сырье

Производство асбестоцементных изделий

Виды асбестоцементных изделий

 

МЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ И ИЗДЕЛИЯ

Основы технологии черных металлов

Производство стали

Строение металлов

Кривые охлаждения и нагревания железа

Структура

Механические испытания металлов

Основы термической обработки стали

Виды термической обработки стали

Химико-термическая обработка стали

Наклеп, возврат и старение стали

Применение металлов в строительстве. Сталь углеродистая обыкновенного качества

Сталь легированная

Применение стали в строительстве

Чугуны

Цветные металлы и сплавы

Коррозия металлов и способы защиты от нее

Сварка металлов

 

МАТЕРИАЛЫ И ИЗДЕЛИЯ ИЗ ДРЕВЕСИНЫ

Строение и состав древесины

Механические свойства древесины

Пороки древесины

Сушка древесины

Защита древесины от гниения, поражения насекомыми и возгорания

Основные породы древесины, применяемые в строительстве

Материалы и изделия из древесины

Строительные детали и изделия из древесины

Методика преподавания материалов и изделий из древесины

  

ТЕПЛОИЗОЛЯЦИОННЫЕ И АКУСТИЧЕСКИЕ МАТЕРИАЛЫ И ИЗДЕЛИЯ

Строение и свойства теплоизоляционных материалов

Неорганические теплоизоляционные материалы и изделия

Теплоизоляционные материалы из вспученных горных пород и изделия на их основе

Органические теплоизоляционные материалы и изделия

Акустические материалы и изделия

Звукопоглощающие материалы и изделия

Звукоизоляционные материалы и изделия

Методика преподавания теплоизоляционных и акустических материалов и изделий

 

БИТУМНЫЕ И ДЕГТЕВЫЕ ВЯЖУЩИЕ И МАТЕРИАЛЫ НА ИХ ОСНОВЕ

Битумы

Состав и структура битумов

Свойства битумов

Дегти

Состав, свойства и применение дегтя

Смешанные вяжущие на основе битумов и дегтей, эмульсии и пасты

Материалы на основе битумов и дегтей

Сырье

Структура и состав асфальтового бетона

Производство асфальтового бетона

Свойства асфальтового бетона

Применение асфальтового бетона

Кровельные, гидроизоляционные и герметизирующие материалы

Покровные материалы

Рулонные покровные материалы

Беспокровные рулонные материалы на основе

Обмазочные материалы (мастики, эмульсии и пасты)

Герметизирующие материалы (герметики) на основе битумов

Методика преподавания вяжущих и материалов на основе битумов и дегтей

  

МАТЕРИАЛЫ И ИЗДЕЛИЯ ИЗ ПЛАСТМАСС

Основные компоненты пластмасс

Наполнители

Пластификаторы. Стабилизаторы, отвердители, инициаторы

Основные свойства строительных пластмасс. Прочность пластмасс

Виды строительных материалов и изделий из пластмасс

Конструкционно-отделочные и отделочные материалы

Материалы для полов

Теплоизоляционные материалы

Гидроизоляционные материалы и герметики

Трубы и санитарно-технические изделия

Применение полимеров в технологии бетонов

Клеи на основе полимеров

Методика преподавания материалов и изделий из пластмасс

  

ЛАКОКРАСОЧНЫЕ МАТЕРИАЛЫ

Пигменты и наполнители

Природные неорганические пигменты

Искусственные неорганические пигменты

Металлические и органические пигменты

Связующие вещества, растворители и разбавители

Растворители и разбавители

Красочные составы

Лаки

Водоразбавляемые краски на основе неорганических вяжущих веществ и клеев