Строительство |
Строительные материалы и изделия |
|
• Ячеистые бетоны являются разновидностью легких бетонов с равномерно распределенными порами (до 85% от общего объема бетона); их получают в результате затвердевания предварительно вспученной порообразователем смеси вяжущего, воды и кремнеземистого компонента. По виду применяемого вяжущего ячеистые бетоны делят на Следующие группы: газобетоны и пенобетоны, получаемые на основе портландцемента или цементно-известкового вяжущего; газосиликаты и пеносиликаты, получаемые на основе смеси извести-кипелки и кварцевого песка; газошлакобетоны и пено-Ч1лакобетоны, получаемые из смеси извести и тонкомолотых Доменных гранулированных шлаков или золы-уноса. По условиям твердения различают ячеистые бетоны пропаренные и автоклавного твердения. По назначению и плотности ячеистые бетоны делят на 'теплоизоляционные с плотностью в сухом состоянии до 500 кг/м3' конструкционно-теплоизоляционные с плотностью 500...900 кг/м и конструкционные с плотностью 900... 1200 кг/м3. По показате лям плотности установлено десять марок ячеистого бетона 0т Д300 до Д1200. Ячеистые бетоны, будучи материалами весьма пористыми отличаются низкой плотностью и соответственно относительно невысокой прочностью. Такая же связь, но несколько другого порядка, существует между плотностью и теплопроводностью — показателем, особо важным для ячеистых бетонов. Теплопроводность ячеистых бетонов изменяется 0,07...0,25 Вт/(м- °С).
В идеальном случае структура ячеистого бетона представляет замкнутые ячейки размером 0,4...1,5 мм. Равномерность размеров и замкнутый характер пор уменьшают концентрацию напряжений в цементной оболочке ячеек, распределение напряжений происходит равномерно по сечению элемента, и прочность ячеистого бетона увеличивается. При неудовлетворительной структуре наряду с мелкими замкнутыми порами присутствуют открытые крупные ячейки, которые могут сообщаться не только между собой, но и с окружающей средой. При такой структуре ячеистого бетона уменьшаются прочность и морозостойкость, увеличиваются теплопроводность и водопоглощение. Высокая морозостойкость ячеистых бетонов объясняется особенностями их строения — большим количеством замкнутых пор, наполненных воздухом или газом. Для ячеистых бетонов установлены следующие марки морозостойкости: F15, 25, 35, 50 и 100. Важным показателем прочности ячеистого бетона является прочность камня-оболочки ячейки, которая зависит не только от вида вяжущего, но и условий его твердения и влажности бетона. Наиболее высокую прочность имеют бетоны после автоклавной обработки, при этом значительно экономится вяжущее вещество. В зависимости от гарантированных значений прочности ячеисто го бетона на сжатие установлены следующие классы (МПа) В0,35; 0,75; 0,85; 1; 1,5; 2,5; 3,5; 7,5; 10; 12,5; 15; 17,5 и 20. Большие усадочные деформации вызывают изменением влажности при высыхании бетона, их величина зависит главным образом от начальной влажности изделий после тепловлаж-ностной обработки. После автоклавного твердения влажность изделий доходит до 25% по массе, а после пропаривания — до 50%. Усадка после высыхания достигает соответственно 1,2 и 2,5 мм/м. От усадочных деформаций могут появиться трещины, значительно снижающие долговечность изделий. Введение в состав ячеистого бетона немолотого песка или снижение расхода воды затворения, а также применение более совершенной технологии изготовления изделий — вибровспучивания с последующей автоклавной обработкой — позволяет значительно снизить усадочные деформации. Вяжущим для приготовления ячеистых бетонов обычно слу жат портландцемент, молотая негашеная известь. В качестве кремнеземистого компонента используют измельченный кварце вый песок, молотые доменные шлаки и золу-унос. Вода для ячеистых бетонов должна удовлетворять общим требованиям, предъявляемым к воде для бетонов. Для образования ячеистой структуры бетона применяют пено-и разообразователи. В качестве пенообразователей используют несколько видов поверхностно-активных веществ, способствующих получению устойчивых пен. Клееканифольный пенообразователь приготовляют из мездрового клея, канифоли и водяного раствора едкого иатра; смолосапониновый — из мыльного корня и воды, иногда для увеличения стойкости пены в него вводят жидкое стекло; алюмосульфонафтеновый — из керосинового контакта, сернокислого глинозема и едкого натра; пенообразователь ГК — из гидролизованной боенской крови и сернокислого железа. В качестве газообразователей используют алюминиевую пудру ПАК-3 или ПАК.-4 с содержанием активного алюминия 82% и тонкостью помола 5000...6000 см2/г. Расход алюминиевой пудры зависит от плотности получаемого газобетона и составляет 0,25...0,6 кг/м3. • Пенобетоны получают смешиванием цементного теста или раствора с устойчивой пеной. Пену получают взбиванием жидкой смеси канифольного мыла и животного клея или водного раствора сапонина (вытяжки из растительного мыльного корня). Такая пена имеет устойчивую структуру, хорошо смешивается с цементным тестом и раствором, которые распределяются по пленкам, окружающим воздушные ячейки, и в этом положении затвердевают. Лучшими пенообразователями являются алюмо-сульфонафтеновые и препарат ГК (гидролизованная боенская кровь). Пену, цементное тесто или раствор, а также их смесь приготовляют в специальных пенобетоносместителях, состоящих из трех барабанов, внутри которых вращаются валы с лопастями. Готовое тесто из верхнего барабана переливается в нижний, туда же из второго верхнего барабана поступает готовая пена, после чего тесто и пену тщательно перемешивают в течение 2... 3 мин. Приготовленная смесь поступает в бункера, из которых разливается в формы для изделий. До тепловлажностной обработки смесь выдерживают в формах. За это время пеномасса приобретает начальную прочность, не разрушаясь при встряхивании. Сократить время выдержки можно путем использования быстросхватывающихся цементов или путем введения добавок — ускорителей твердения. По физико-механическим свойствам различают пенобетон теплоизоляционный, конструктивно-теплоизоляционный и конструктивный. Теплоизоляционный пенобетон отливается в виде блоков размером 100X50X50 см и больше, которые после затвердевания распиливают на плиты. Теплоизоляционный пенобетон имеет прочность до 2,5 МПа, теплопроводность — 0,1... 0,2 Вт/(м- °С). Этот вид пенобетона применяют для теплоизоляции железобетонных покрытий, перегородок и т. д. Конструктивно-теплоизоляционный пенобетон имеет прочность 2,5...7,5 МПа, теплопроводность 0,2...0,4 Вт/(м-°С), применяют его для ограж. 1 дающих конструкций. Из конструктивного пенобетона изготов- I ляют изделия для покрытий. Их армируют двумя сетками из I проволоки диаметром 3...5 мм. Конструктивный пенобетон имеет * прочность до 20 МПа и теплопроводность 0,4...0,6 Вт (м-°С). Конструктивный пенобетон широко используют в трехслойных ограждающих конструкциях отапливаемых зданий. Газобетон получают из смеси портландцемента, кремнеземистого компонента и газообразователя. Широкое применение в качестве газообразователя получила алюминиевая пудра, которая, реагируя с водным раствором гидроксида кальция, выделяет водород 2А1 + ЗСа(ОН)26Н20 = ЗСаО.А1203-6Н20 + ЗН2 вызывающий вспучивание цементного теста. Последнее, затвердевая, сохраняет пористую структуру. В портландцементных бетонах гидроксид кальция образуется в результате гидролиза трехкальциевого силиката, для ускорения этого процесса в смесь добавляют известь до 10% от массы цемента. Алюминиевую пудру для лучшего распределения в смеси применяют в виде водной суспензии. Так как алюминиевый порошок при изготовлении на заводе парафинируют и частицы алюминия не смачиваются водой, то для удаления пленки парафина алюминиевую пудру предварительно прокаливают в электропечах при температуре 200°С, чтобы исключить возможность воспламенения порошка или взрыва. Кроме того, для придания пудре гидрофильных свойств ее обрабатывают водным раствором СДБ, канифольного мыла и др. Для изготовления изделий из газобетона смесь молотого песка и воды смешивают в смесителе с цементом, алюминиевым порошком, водой и немолотым песком. Затем смесь разливают в формы. В настоящее время на заводах страны для приготовления ячеистого бетона различных видов применяют современные виброгазобетоносместители СМС-40 и гидродинамический смеситель ГДС-3. Эти машины обеспечивают хорошее перемешивание, они позволяют получать высокогомогенные и активированные смеси с пониженным содержанием воды затворения (до 35...40%), при этом продолжительность процесса приготовления смеси не превышает 3 мин. Гидродинамический смеситель ГДС-3 ( 6. 16) состоит из горизонтальной смесительной камеры с лопастным валом, активаторами, загрузочными устройствами, самоходного портала, щита снабжения электроэнергией и системы управления. Виброгазосмеситель СМС-40 ( 6.17) состоит из корпуса, вертикального вала с лопастями, вибрационной системы и самоходного портала. На внутренней поверхности корпуса смонтированы отбойные лопасти. По всей длине вала по винтовой линии установлены попарно лопасти, образующие двухлопастной пропеллер. Привод вертикального вала осуществляется снизу через клиноременную передачу и конический редуктор. В конструкции вибрационного устройства предусмотрено регулирование частоты вибрации и амплитуды колебаний. Исходные материалы загружаются через люки, имеющиеся в крышке. Готовая смесь выгружается через затвор, под которым расположен лоток, предназначенный для заливки газобетонной смеси в форму. Формование ячеисто-бетонных масс производят на виброплощадках со специальной бортоснасткой. После непродолжительной выдержки газобетон разрезают машиной СМ-1211 на мелкие блоки и направляют в автоклавы. Режим автоклавной обработки изделий поддерживается по заданной программе автоматической системой регулирования. Твердение изделий в автоклаве при температуре 175°С и давлении 0,8 МПа обеспечивает высокую прочность и позволяет существенно уменьшить расход цемента путем частичной или полной замены его известью. Из автоклавов изделия поступают в пакетах на склад готовой продукции. По свойствам газобетон аналогичен пенобетону. Однако он проще в изготовлении и позволяет получать изделия более устойчивого качества. Способ производства ячеистых бетонов методом комплексной вибрации позволяет не только управлять процессом структура образования, но и дает ряд технико-экономических преимуществ-интенсифицирует технологический процесс, улучшает свойства ячеистых бетонов, снижает влажность готовых изделий. Вслед. ствие этого, а также возможности использования местного сырья (извести, песка, шлака и золы) изготовление автоклавного газобетона, газосиликата и газошлакобетона стало основным направлением развития производства ячеистых бетонов. Блоки из ячеистых бетонов автоклавного твердения примени-. ют для кладки наружных и внутренних стен и перегородок жилых, общественных, промышленных и сельскохозяйственных зданий с относительной влажностью воздуха помещений не более 75%, а в наружных стенах при влажности более 60% должно наноситься с внутренней поверхности стен пароизоляционное покрытие. Применение блоков из ячеистых бетонов для цоколей и стен подвалов, а также стен помещений с мокрым режимом или наличием агрессивных сред не допускается. |
К содержанию книги: "Строительные материалы и изделия"
Смотрите также:
Минеральные вяжущие вещества Бетон и строительные растворы Добавки в бетон Гидроизоляция Каркасные работы Внутренние перегородки Лаки и краски Строительство дома
ОСНОВНЫЕ СВОЙСТВА СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ
Связь состава, структуры и свойств
Стандартизация свойств. Марки материалов
Механические свойства стройматериалов
Химические и технологические свойства стройматериалов. Химические и физико-химические свойства
Технологические свойства стройматериалов
Методика преподавания свойств строительных материалов
Химический и минеральный составы магматических пород
Важнейшие виды магматических пород и их строительные свойства
Осадочные горные породы. Классификация осадочных горных пород
Химический и минеральный составы осадочных пород
Важнейшие виды осадочных пород и их строительные свойства
Важнейшие метаморфические породы
Виды материалов и изделий. Технические требования к ним
Меры защиты каменных материалов от выветривания в сооружениях
Методика преподавания природных каменных материалов
КЕРАМИЧЕСКИЕ МАТЕРИАЛЫ И ИЗДЕЛИЯ
Сырье для производства керамических материалов и изделий
Общая схема производства керамических изделий
Кирпич керамический обыкновенный
Эффективные стеновые керамические изделия
Монтаж дома из керамических панелей
Облицовочные материалы и изделия
Керамические изделия для внутренней облицовки
Керамические материалы и изделия различного назначения
Санитарно-техническая керамика
Теплоизоляционные керамические изделия
Кислотоупорные керамические изделия
Методика преподавания керамических материалов и изделий
МАТЕРИАЛЫ И ИЗДЕЛИЯ ИЗ СИЛИКАТНЫХ РАСПЛАВОВ
Разновидности стекла и стеклянных изделий в строительстве
Методика преподавания стекла и других плавленых материалов и изделий
НЕОРГАНИЧЕСКИЕ ВЯЖУЩИЕ ВЕЩЕСТВА
Сырьевые материалы и основы технологии неорганических вяжущих веществ
Производство неорганических вяжущих веществ
Магнезиальные вяжущие вещества
Растворимое стекло и кислотоупорный цемент
Известь строительная воздушная
Гидравлические вяжущие вещества
Стойкость затвердевшего цемента
Портландцементы с активными минеральными добавками
Другие вяжущие с активными минеральными добавками
Гипсоцементно-пуццолановые вяжущие. Глиноземистый цемент
Состав и особенности твердения глиноземистого цемента
Свойства и применение глиноземистого цемента
Расширяющиеся и безусадочные цементы
Методика преподавания неорганических вяжущих веществ
Основные свойства строительных растворов
Применение растворов различных видов
Методика преподавания бетонов и строительных растворов
ИСКУССТВЕННЫЕ КАМЕННЫЕ БЕЗОБЖИГОВЫЕ МАТЕРИАЛЫ И ИЗДЕЛИЯ
Силикатные материалы и изделия
Производство силикатных изделий
Гипсовые и гипсобетонные изделия
Свойства изделий на основе гипса
Производство изделий из гипсовых и гипсобетонных смесей
Асбестоцементные материалы и изделия
Производство асбестоцементных изделий
МЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ И ИЗДЕЛИЯ
Основы технологии черных металлов
Кривые охлаждения и нагревания железа
Механические испытания металлов
Основы термической обработки стали
Виды термической обработки стали
Химико-термическая обработка стали
Наклеп, возврат и старение стали
Применение металлов в строительстве. Сталь углеродистая обыкновенного качества
Применение стали в строительстве
Коррозия металлов и способы защиты от нее
МАТЕРИАЛЫ И ИЗДЕЛИЯ ИЗ ДРЕВЕСИНЫ
Механические свойства древесины
Защита древесины от гниения, поражения насекомыми и возгорания
Основные породы древесины, применяемые в строительстве
Материалы и изделия из древесины
Строительные детали и изделия из древесины
Методика преподавания материалов и изделий из древесины
ТЕПЛОИЗОЛЯЦИОННЫЕ И АКУСТИЧЕСКИЕ МАТЕРИАЛЫ И ИЗДЕЛИЯ
Строение и свойства теплоизоляционных материалов
Неорганические теплоизоляционные материалы и изделия
Теплоизоляционные материалы из вспученных горных пород и изделия на их основе
Органические теплоизоляционные материалы и изделия
Акустические материалы и изделия
Звукопоглощающие материалы и изделия
Звукоизоляционные материалы и изделия
Методика преподавания теплоизоляционных и акустических материалов и изделий
БИТУМНЫЕ И ДЕГТЕВЫЕ ВЯЖУЩИЕ И МАТЕРИАЛЫ НА ИХ ОСНОВЕ
Состав, свойства и применение дегтя
Смешанные вяжущие на основе битумов и дегтей, эмульсии и пасты
Материалы на основе битумов и дегтей
Структура и состав асфальтового бетона
Производство асфальтового бетона
Применение асфальтового бетона
Кровельные, гидроизоляционные и герметизирующие материалы
Беспокровные рулонные материалы на основе
Обмазочные материалы (мастики, эмульсии и пасты)
Герметизирующие материалы (герметики) на основе битумов
Методика преподавания вяжущих и материалов на основе битумов и дегтей
МАТЕРИАЛЫ И ИЗДЕЛИЯ ИЗ ПЛАСТМАСС
Пластификаторы. Стабилизаторы, отвердители, инициаторы
Основные свойства строительных пластмасс. Прочность пластмасс
Виды строительных материалов и изделий из пластмасс
Конструкционно-отделочные и отделочные материалы
Гидроизоляционные материалы и герметики
Трубы и санитарно-технические изделия
Применение полимеров в технологии бетонов
Методика преподавания материалов и изделий из пластмасс
Природные неорганические пигменты
Искусственные неорганические пигменты
Металлические и органические пигменты
Связующие вещества, растворители и разбавители
Водоразбавляемые краски на основе неорганических вяжущих веществ и клеев