Справочник строителя |
Бетоны. Материалы, технологии, оборудование |
|
Согласно выбранному в предыдущем пункте шагу поперечных балок проверяем по соответствующей нашему типу балок табл. 2.11 максимально допустимый пролет этих балок. Как уже выше упоминалось, эти таблицы составлены с учетом всех расчетных случаев, для поперечных балок прежде всего момент и прогиб. При выборе шага продольных балок необходимо учесть, что крайняя продольная балка находится на расстоянии 15-30 см от стены. Увеличение этого размера может привести к следующим неприятным результатам: - увеличению и неравномерности прогибов на консолях поперечных балок; - возможности опрокидывания поперечных балок во время арматурных работ. Уменьшение усложняет управление стойками и создает опасность соскальзывания поперечных балок с продольных. По той же причине, а также с учетом нормальной работы конца балки (особенно при использовании балок-ферм) назначается минимальный нахлест балок в 15 см на каждой стороне. Фактический шаг продольных балок ни в коем случае не должен превышать допустимое значение по табл. 2.11 и 2.12. Вспомните, что пролет в формуле для определения момента присутствует в квадрате, а в формуле прогиба даже в четвертой степени (соответственно формулы 2.1 и 2.2). Пример Для простоты выбираем прямоугольное помещение внутренними размерами 6,60x9,00 м. Толщина перекрытия 20 см, фанера PERI Birch толщиной 21 мм и размерами листа 2500x1250 мм. Допустимое значение для пролета поперечных балок при их шаге в 62,5 см найдем по табл. 2.11 для балок-ферм GT 24. В первом столбце таблицы найдем толщину 20 см и двигаемся вправо до соответствующего шага поперечных балок (62,5 см). Находим предельно допустимое значение пролета 3,27 м.
Приводим расчетные значения момента и прогиба для этого пролета: - максимальный момент в момент бетонирования - 5,9 кНм (допустимо 7 кНм); - максимальный прогиб (однопролетная балка) -6,4 мм =1/511 пролета. Если продольные балки ставим параллельно длиной стороне помещения, получаем: 6,6 м - 2-(0,15 м) = 6,3 м; 6,3:2 = 3,15 м<3,27 м. Это значение, с одной стороны, допустимо, с другой - достаточно близко к допустимому. Помещение делится на 2 пролета, которым соответствует длина поперечных балок с учетом нахлеста и консолей (минимум 3,15 + 0,15 + 0,15 = 3,45 м), рекомендуется 3,60 м. Проверяем другое направление помещения: 9,0 м - 2-(0,15м) = 8,7 м; 8,7:2 = 4,35 м > 3,27 м; 8,7:3 = 2,9 м< 3,27 м. Получаем три пролета с длиной балок 3,30 м (минимум 2,9 + 0,15 + 0,15 = 3,2 м). Поперечные балки менее нагружены - чаще всего это уже признак перерасхода материала. В некоторых случаях, например, при необходимости установки опалубки вокруг заранее установленного крупногабаритного оборудования приходится рассчитывать балки. При этом следует учитывать следующие предпосылки. Как расчетная схема в системах типа «MULTIFLEX» рассматривается всегда только однопролетная шарнирно опертая балка без консолей, так как при установке опалубки и во время бетонирования всегда имеем промежуточные стадии, где балки работают именно по такой схеме. Для больших пролетов балок без дополнительной поддержки возможна потеря устойчивости уже при маленьких нагрузках. Любая опалубка перекрытия после бетонирования должна вытаскиваться из-под готового перекрытия, иногда из замкнутого помещения, поэтому желательно ограничивать длину балок (проблема веса и маневренности). В случае отсутствия значений в таблице ею все же можно воспользоваться. Например, чтобы увеличить пролет, хотите уменьшить шаг балок - в результате должны проверить допустимость пролета. Например, балки решили ставить с шагом 30 см, толщина перекрытия составляет 22 см. Расчетная нагрузка составляет согласно таблице 7,6 Н/м2. Умножаем эту нагрузку на шаг балок: 7,6-0,3 = 2,28 кН/м. Делим эту величину на один шаг поперечных балок, которые в таблице присутствуют: 2,28:0,4 = 5,7 ~ 6,1 (нагрузка на перекрытия толщиной 16 см); 2,28:0,5 = 4,56 - 5,0 (нагрузка на перекрытия толщиной 12 см). В первом случае находим для толщины перекрытия 16 см и шага балок 40 см пролет 4,07 м, во втором случае - толщина 12 см и шаг 50 см - 4,12 м. Можем принимать меньшее из двух значений минус разность этих значений (учет изменения временной нагрузки, которая присутствует только в расчете на момент), не теряя время на длительные расчеты. В конкретном примере получается при точном расчете 4,06 м, а приняли 4,02 м. |
К содержанию книги: «Бетоны»
Смотрите также:
Как приготовить бетон и строительные растворы
Исходные материалы 1.1. Минеральные вяжущие вещества 1.2. Заполнители 1.3. Вода 1.4. Определение потребного количества материалов Строительные растворы 2.1. Свойства строительных растворов 2.2. Виды строительных растворов 2.3. Приготовление строительных растворов 2.4. Составы Бетоны 3.1. Виды бетона 3.2. Свойства бетона 3.3. Приготовление бетонного раствора 3.4. Составы 3.5. Шлакобетон 3.6. Опилкобетон
Машины и оборудование для приготовления, транспортирования бетонов и бетонных смесей
7.2. Машины для транспортирования бетонных смесей и растворов
7.3. Комплекты машин для укладки и распределения бетона и отделки его поверхности
7.4. Оборудование для уплотнения бетонной смеси
Оборудование для производства железобетонных изделий
Оборудование бетоносмесительных цехов
Оборудование для изготовления арматуры
Оборудование формовочных цехов
Химико-минералогический состав портландцемента
Трехкальциевый гидроалюминат и действие гипса
Структура гидратированного цемента
Механическая прочность цементного геля
Быстротвердеющий портландцемент
Особобыстротвердеющий портландцемент
Портландцемент с умеренной экзотермией
Сульфатостойкий портландцемент
Ускорители и замедлители твердения
ГЛАВА 3. Свойства заполнителей
Общая классификация заполнителей
Природные заполнители для бетона
Сцепление заполнителя с цементным камнем
Прочие механические свойства заполнителя
Пористость и водопоглощение заполнителя
Глинистые, илистые и пылевидные частицы в заполнителе
Слабые и выветрелые зерна заполнителя
Равномерность изменения объема заполнителя
Реакция щелочей цемента с заполнителями бетона
Термические свойства заполнителя
Требования к зерновому составу заполнителя
Рациональные зерновые составы заполнителей
Зерновой состав мелкого и крупного заполнителей
Особо крупные и особо мелкие зерна заполнителя
«Прерывистый» зерновой состав заполнителя
Наибольшая крупность заполнителя
Определение удобоукладываемости бетона
Факторы, влияющие на удобоукладываемость
Определение коэффициента уплотнения
Влияние времени и температуры на удобоукладываемость
Бетонная смесь для подачи бетононасосом
Раздельная укладка бетонной смеси методом «Прелакт»
Прочность бетона при растяжении
Трещинообразование и разрушение при сжатии
Влияние крупного заполнителя на прочность бетона
Влияние жирности смеси на прочность бетона
Влияние возраста на прочность бетона
Самозалечивание трещин в бетоне
Прочность бетона при сжатии и прочность при растяжении
Сцепление между бетоном и арматурой
Влияние температуры на прочность бетона
Пропаривание при атмосферном давлении
Пропаривание при повышенном давлении
ГЛАВА 6. Упругость, усадка и ползучесть бетона
Факторы влияющие на усадку бетона
Влияние ухода и условия твердения бетона
Дифференциальная усадка бетона
Усадка за счет карбонизации бетона
Факторы влияющие на ползучесть бетона
Химические воздействия на бетон
Испытание бетона на сульфатостойкость
Действие морской воды на бетон
Действие мороза на свежеуложенный бетон
Действие мороза на затвердевший бетон
Испытания бетона на морозостойкость
Бетон с воздухововлекающими добавками
Коэффициент термического расширения бетона
ГЛАВА 8. Испытание затвердевшего бетона
Влияние условий испытаний образцов
Разрушение образцов при сжатии
Влияние отношения высоты к диаметру на прочность бетона
Сравнение прочности бетонных кубов и цилиндров
Размеры образца и размеры заполнителя
ГЛАВА 9. Легкие и особотяжелые бетоны
Глава I. ОСОБЕННОСТИ ТЕХНОЛОГИИ ИЗГОТОВЛЕНИЯ ВЫСОКОПРОЧНЫХ БЕТОНОВ
1. МАТЕРИАЛЫ, ИСПОЛЬЗУЕМЫЕ ДЛЯ ПРИГОТОВЛЕНИЯ БЕТОНА
2. ВЛИЯНИЕ КАЧЕСТВА И ДОЗИРОВКИ СОСТАВЛЯЮЩИХ НА СВОЙСТВА БЕТОНА И БЕТОННОЙ СМЕСИ
3. ПОДБОР СОСТАВА И КОНТРОЛЬ КАЧЕСТВА ВЫСОКОПРОЧНОГО БЕТОНА
4. ПОЛУЧЕНИЕ ВЫСОКОПРОЧНОГО БЕТОНА В ПРОИЗВОДСТВЕННЫХ УСЛОВИЯХ
1. ПРОЧНОСТЬ И ДЕФОРМАЦИИ БЕТОНА
2. ДИАГРАММА СОСТОЯНИЙ БЕТОНА И ПАРАМЕТРИЧЕСКИЕ ТОЧКИ
3. ВЛИЯНИЕ ПАРАМЕТРОВ RT НА ЗАКОНОМЕРНОСТИ ДЕФОРМИРОВАНИЯ И ПРОЧНОСТЬ БЕТОНА
4. ЗАКОНОМЕРНОСТИ ДЕФОРМИРОВАНИЯ И РАЗРУШЕНИЯ СТРУКТУРЫ БЕТОНА ПРИ СЛОЖНЫХ НАПРЯЖЕННЫХ СОСТОЯНИЯХ
Г л а в a III. ПРОЧНОСТНЫЕ ХАРАКТЕРИСТИКИ БЕТОНА ПРИ КРАТКОВРЕМЕННОМ СТАТИЧЕСКОМ НАГРУЖЕНИИ
2. ПРОЧНОСТЬ ПРИ ОСЕВОМ РАСТЯЖЕНИИ
3. ПРОЧНОСТЬ НА РАСТЯЖЕНИЕ ПРИ ИЗГИБЕ И РАСКАЛЫВАНИИ
4. НОРМАТИВНЫЕ И РАСЧЕТНЫЕ СОПРОТИВЛЕНИЯ ВЫСОКОПРОЧНЫХ БЕТОНОВ
Глава IV. ПРОЧНОСТНЫЕ ХАРАКТЕРИСТИКИ БЕТОНА ПРИ МНОГОКРАТНОМ И ДЛИТЕЛЬНОМ НАГРУЖЕНИИ
2. ПРОЧНОСТЬ БЕТОНА ПРИ ДЛИТЕЛЬНОМ НАГРУЖЕНИИ
Г л а в а V. ДЕФОРМАЦИИ БЕТОНА ПРИ КРАТКОВРЕМЕННОМ НАГРУЖЕНИИ. МОДУЛЬ УПРУГОСТИ БЕТОНА
1. МЕТОДЫ ОЦЕНКИ МОДУЛЯ УПРУГОСТИ БЕТОНА
4. ОСОБЕННОСТИ ВЗАИМОСВЯЗИ МОДУЛЯ УПРУГОСТИ И ПРОЧНОСТИ БЕТОНА
5. НЕКОТОРЫЕ ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО НОРМИРОВАНИЮ УПРУГИХ СВОЙСТВ ВЫСОКОПРОЧНОГО БЕТОНА
6. ПРЕДЕЛЬНАЯ ДЕФОРМАТИВНОСТЬ БЕТОНА ПРИ КРАТКОВРЕМЕННОМ НАГРУЖЕНИИ
Глава VI. ДЕФОРМАЦИИ БЕТОНА ПРИ ДЛИТЕЛЬНОМ НАГРУЖЕНИИ. ПОЛЗУЧЕСТЬ БЕТОНА
1. ФАКТОРЫ, ВЛИЯЮЩИЕ НА ПОЛЗУЧЕСТЬ БЕТОНА
2. ХАРАКТЕР ВЗАИМОСВЯЗИ МЕЖДУ ПОЛЗУЧЕСТЬЮ И ПРОЧНОСТЬЮ БЕТОНА
3. АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ СВЯЗЕЙ ПОЛЗУЧЕСТИ И ПРОЧНОСТИ ТЯЖЕЛОГО БЕТОНА НА ОСНОВЕ ВЫРАЖЕНИЙ
4. О ВЛИЯНИИ ПОДВИЖНОСТИ БЕТОННОЙ СМЕСИ НА ПОЛЗУЧЕСТЬ ВЫСОКОПРОЧНОГО БЕТОНА
5. ОЦЕНКА СВОЙСТВ ПОЛЗУЧЕСТИ ВЫСОКОПРОЧНЫХ БЕТОНОВ ПРИ ПРОЕКТИРОВАНИИ КОНСТРУКЦИЙ
6. ОСОБЕННОСТИ ДЕФОРМИРОВАНИЯ ВЫСОКОПРОЧНОГО БЕТОНА В НЕЛИНЕЙНОЙ ОБЛАСТИ
Г л а в а VII. СОБСТВЕННЫЕ ДЕФОРМАЦИИ БЕТОНА. УСАДКА БЕТОНА
1. ФАКТОРЫ, ВЛИЯЮЩИЕ НА ВЕЛИЧИНУ УСАДКИ БЕТОНА
2. О СВЯЗИ ДЕФОРМАЦИЙ УСАДКИ С ВЛАГОФИЗИЧЕСКИМИ ПРОЦЕССАМИ В БЕТОНЕ
3. УСАДКА БЕТОНОВ РАЗНОЙ ПРОЧНОСТИ
4. ПОДВИЖНОСТЬ БЕТОННОЙ СМЕСИ И УСАДКА ВЫСОКОПРОЧНОГО БЕТОНА
5. ПРАКТИЧЕСКИЙ МЕТОД ПРОГНОЗИРОВАНИЯ ДЕФОРМАЦИЙ УСАДКИ ВЫСОКОПРОЧНЫХ БЕТОНОВ
Глава VIII. ИЗМЕНЕНИЕ ВО ВРЕМЕНИ ПРОЧНОСТНЫХ И ДЕФОРМАТИВНЫХ СВОЙСТВ БЕТОНА
1. ОЦЕНКА РОСТА ВО ВРЕМЕНИ ПРОЧНОСТНЫХ ХАРАКТЕРИСТИК БЕТОНА
2. ВЛИЯНИЕ СТАРЕНИЯ БЕТОНА НА ЕГО ДЕФОРМАТИВНЫЕ СВОЙСТВА
Г л а в а IX. ПРОБЛЕМЫ ДОЛГОВЕЧНОСТИ ВЫСОКОПРОЧНОГО БЕТОНА
1. СТОЙКОСТЬ БЕТОНА В АГРЕССИВНЫХ СРЕДАХ
Глава X. ТЕХНИКО-ЭКОНОМИЧЕСКАЯ ЭФФЕКТИВНОСТЬ ВЫСОКОПРОЧНЫХ БЕТОНОВ
2. ОПРЕДЕЛЕНИЕ ПОДВИЖНОСТИ РАСТВОРНОЙ СМЕСИ
3. ОПРЕДЕЛЕНИЕ ПЛОТНОСТИ РАСТВОРНОЙ СМЕСИ
4. ОПРЕДЕЛЕНИЕ РАССЛАИВАЕМОСТИ РАСТВОРНОЙ СМЕСИ
5. ОПРЕДЕЛЕНИЕ ВОДОУДЕРЖИВАЮЩЕЙ СПОСОБНОСТИ РАСТВОРНОЙ СМЕСИ
6. ОПРЕДЕЛЕНИЕ ПРОЧНОСТИ РАСТВОРА НА СЖАТИЕ
7. ОПРЕДЕЛЕНИЕ СРЕДНЕЙ ПЛОТНОСТИ РАСТВОРА
8. ОПРЕДЕЛЕНИЕ ВЛАЖНОСТИ РАСТВОРА
9. ОПРЕДЕЛЕНИЕ ВОДОПОГЛОЩЕНИЯ РАСТВОРА
10. ОПРЕДЕЛЕНИЕ МОРОЗОСТОЙКОСТИ РАСТВОРА